当前位置:文档之家› 第4章 爆破破岩机理

第4章 爆破破岩机理


1 N p2 p1 1 N 0 DV 1 / r DV 2
传入岩石中的爆炸载荷(续)
岩石中透射波参数——孔壁荷载近似计算 实践表明,并非在所有岩石中都能生成冲击波,这取决于炸药 与岩石的性质。对大多数岩石而言,即便生成冲击波,也很快 衰减成弹性应力波,作用范围也很小,故有时也近似认为爆轰 波与炮孔壁岩石的碰撞是弹性的,岩石中直接生成弹性应力波 (简称应力波),进而按弹性波理论或声学近似理论确定岩石 界面上的初始压力。根据声学近似理论可推得:
传入岩石中的爆炸载荷(续)
爆轰波对炮孔壁的冲击作用 耦合装药条件下,炸药与岩石紧密接触,因而爆轰波 将在炸药岩石界面上发生透射、反射。
通常炸药柱在一端用雷管 引爆,爆轰波不是平面, 而是呈球面形,而且爆轰 波对炮孔壁岩石的冲击也 不是正冲击(正入射), 而是斜冲击。通常按正入 射求解岩石中的透射波参 数。
岩石爆破机理早期发展阶段主要为 L.W.利文斯顿的爆破 理论、流体动力学理论以及炸药量与岩石破碎体积成比例 理论。
4.1 岩石爆破理论发展阶段
直到20世纪60年代日野熊雄的冲击波拉伸破坏理论的出 现,标志着早期爆破理论发展阶段的结束,爆破机理发展 第二阶段的开始。 岩石爆破理论发展的第二阶段主要提出了岩石爆破机理 的三种假说: ★ 岩石爆破破坏机理的三种假说: 1)爆生气体膨胀推力作用假说; 2)爆炸应力波反射拉伸作用假说; 3)爆生气体和爆炸应力波综合作用假说。 ★ 装药爆破作用: *内部作用:岩石在炸药作用下发生破坏的物理过程 *外部作用:爆破漏斗
岩石中爆炸应力波曲线特征(续)
(3)当σA<σ<σB时,由于dσ/dε不是常数, 且随应力的增大而减小,因此应力幅值 大的应力波速度低于小应力幅值的应力 波,在传播过程中波阵面逐渐变缓,塑 性波速度以亚音速传播。而应力小于的 部分,则以弹性波速度传播。 (4) 当σ<σA时,dσ/dε为常数,等于岩 石的弹性常数,这时应力波为弹性波, 以未扰动岩石中的音速传播。
传入岩石中的爆炸载荷(续)
岩石中透射波参数——孔壁荷载计算 分别对入射波、反射波和透射波建立连续方程和运动方 程,并利用界面上的连续条件即可求得:
p2 p0 1 N p1 p0 1 N 0 DV 1 / r DV 2
上式可化为:
N
1 u1 ) 1 ( DV
0 DV 1
爆生气体的膨胀作用
爆炸应力波反射拉伸作用假说
这种学说以爆炸动力学为基础,认为应力波是引起岩 石破碎的主要原因。这种学说忽视了爆轰气体的破坏作 用,也忽视了压应力的作用,其基本观点如下: 爆轰波冲击和压缩药包周围的岩壁,在岩石中激发形 成冲击波并很快衰减为应力波。 此应力波在周围岩体内形 成裂隙的同时向前传播,当应力波传到自由面时,产生反 射拉应力波,当拉应力波的强度超过自由面处岩石的抗拉 强度时,从自由面开始向爆源方向产生拉伸片裂破坏,直 至拉伸波的强度低于岩石的动态抗拉强度处时停止。自由 面形成片落爆破漏斗。(外——内)
爆生气体和爆炸应力波综合作用假说
这种学说认为,岩石的破坏是应力波和爆轰气体共同 作用的结果。这种学说综合考虑了应力波和爆轰气体在岩 石破坏过程中所起的作用,其基本观点如下: 炸药爆炸后在岩石中激发形成冲击波并很快衰减为应 力波。冲击波在药包附近的岩石中产生“压碎”现象,应 力 波在压碎区域之外产生径向裂隙。随后,爆轰气体产物继 续压缩被冲击波压碎的岩石,爆轰气体“楔入”在应力波 作 用下产生的裂隙中,使之继续向前延伸和进一步张开。当 爆轰气体的压力足够大时,爆轰气体将推动破碎岩块作径 向抛掷运动。自由面的反射拉伸作用同样也加强了径向裂 隙的扩展,并造成岩石片落。
炸药在岩土介质中爆炸发展图像
1)岩石中爆炸应力波的演变
炸药在岩土介质中爆炸发展图像(续)
2) 冲击载荷作用下岩石的变形及其对应的各种应力波
冲击载荷作用下岩石的变形规律
炸药在岩土介质中爆炸发展图像(续)
2)冲击载荷作用下岩石的变形及其对应的各种应力波
不同应力幅值时岩石中传播的各种应力波
岩石中爆炸应力波曲线特征
为分析岩体爆破破碎机理,通常假定岩石是均质,并 将装药简化为在一个自由面条件下的球形药包。球形药包 的爆破作用原理是其它形状药包爆破作用原理的基础。 最小抵抗线W: 岩石内装药中心距自由面的垂直距离。 临界抵抗线Wc : 对于一定量的装药来说,若最小抵抗线超过某一临界值 (即临界抵抗线)时,可认为药包处在无限岩石介质体中 药包爆后,自由面上刚好不会出现爆破迹象。即装药爆破 只发生在岩石内部,没能达到自由面。
从古代至今,采用炸药爆炸来破碎岩体仍然是一种最有效的方法。 炸药爆炸作用下,岩体是如何破碎的呢?
早在1613年德国人马林(Marlin)、韦格尔(Weigel) 在弗雷帕格(Freisberg)矿山首先用炸药开掘坑道,开创 了爆破采矿的历史。
国内外学者们经过长期探索,包括高速摄影技术、现场爆破试验和 计算机模拟技术,提出了岩石爆破机理的种种假说。
爆生气体膨胀推力作用假说
这种学说从静力学观点出发,认为岩石的破碎主要是 由于爆轰气体的膨胀压力引起的。这种学说忽视了岩体中 冲击波和应力波的破坏作用,其基本观点如下: 药包爆炸,产生大量高温高压气体,这些爆炸气体迅 速膨胀并以极高的压力作用于药包周围的岩壁上,形成压 应力场。当岩石的抗拉强度低于压应力在切向衍生的拉应 力时,将产生径向裂隙。作用于岩壁上的压力引起岩石质 点径向位移,由于不同方向受力不等引起径向位移速度不 等,导致在岩石中形成剪切应力。当剪切应力超过岩石抗 剪强度时,岩石即产生剪切破坏。破碎岩块又在爆轰气体 推力作用下沿径向抛出,形成爆破漏斗坑。(内——外)
传入岩石中的爆炸载荷
1)耦合装药时传入岩石中的爆炸载荷: 爆轰波参数:根据流体动力学爆轰理论, 可以建立炸药正常爆轰条件下的爆轰参 数计算式,目前普遍采用的炸药爆轰参 数的简明(近似)计算式如下:
式中:Qv为炸药的爆热; 为炸药的0 爆轰波 阵面的压力、产物密度、质点 速度和声速。
岩石中爆炸应力波的衰减
在冲击波作用区之外,传播的是应力波,应力波的衰 减规律与冲击波相同,但衰减指数较小。前苏联学者 给出的应力波的衰减指数为:
我国武汉岩土力学研究所通过现场试验得出的应力波 衰减指数为:
在应力波作用区,岩石中柱状应力波的径向应力与切 向应力之间有如下关系:
4.3 岩石爆破作用 4.3.1 爆破内部作用
岩石在冲击载荷作用下,对应不同应力幅值,所形成 的应力波特征不同: (1)在装药近区,作用于岩石的爆炸载荷值很高,当 σ>σC , 时,将在岩石中形成冲击波(图a)。 (2)随着冲击波向外传播、衰减,当 σB<σ<σC时,如 (图 b )所示,由于变形模量 dσ/dε 随应力的增大而增 大,波速大于图中A--B 段的塑性波波速,但小于O--A 段的弹性波波速,因此应力幅值大的塑性波追赶前面 的塑性波,形成速性追赶加载,形成陡峭的波阵面, 但波速低于弹性波速,为亚音速,这种波称为非稳定 的冲击波。
爆破内部作用(续)
当最小抵抗线大于临界抵抗线(W > Wc )时,装药 爆破只发生在岩石内部,没能达到自由面。装药的此种 爆破作用叫做爆破的内部作用。 内部作用时,根据岩石的破坏情况,除在装药周围 扩大爆腔外,还将在岩石中自爆源向外依次形成粉碎区 (或称压缩区、压碎区)、破裂区(或称裂隙区)和震 动区。
第4章 爆破破岩机理
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 岩石爆破理论发展阶段 岩石中的爆炸应力波 岩石爆破作用 炸药在岩石中的爆破破坏过程 爆破漏斗理论 光面爆破和预裂爆破 微差爆破 聚能效应 装药量计算原理 影响爆破效应的因素
4.1 岩石爆破理论发展阶段
一、岩石爆破破坏机理的三种假说
由于岩石是一种非均质、各向异性的介质,爆炸本身 又是一个高温高压高速的变化过程,炸药对岩石破坏的整 个过程在几十微秒到几十毫秒内就完成了,因此研究岩石 爆破作用机理是一项非常复杂和困难的工作。尽管如此, 理论研究方面仍取得重大成果,归结起来岩石爆破破坏机 理有三种假说 1)爆生气体膨胀推力作用假说; 2)爆炸应力波反射拉伸作用假说; 3)爆生气体和爆炸应力波综合作用假说。
爆破内部作用岩石破坏分区示意图
R0—药包半径; R1—粉碎区半径; R2—破裂区半径
R0
R1
R2
装药内部爆破作用——粉碎区
密闭在岩体中的药包爆炸时,产生高温高压气体,爆 轰压力在数微秒内急剧增高到数万兆帕,强烈冲击药包周 围岩石,激起起冲击波,产生很高的径向和切相压应力, 其强度远远超过岩石的动态抗压强度。结果造成爆腔扩 大,周围岩石形成粉碎性破坏,形成粉碎区。(对于坚硬 岩石,粉碎性破坏明显,而对于松软岩石则被压缩形成空 腔,空腔表面形成较为坚实的压实层,故这种情况下的粉 碎区又称为压缩区。 粉碎区内冲击波衰减很快,破坏范围较小,粉碎区半 径较小,一些研究表明:对于球形装药,一般是药包半径 的(1.28~1.75)倍;对于柱形装药,一般是药包半径的 (1.65~3.05)倍。但破坏程度大,能量消耗多。
霍普金森压杆试验示意图
不同药量的岩石压杆爆破试验
自由面附近应用波的发射作用
岩石条爆破试验: 1-雷管; 2-炸药; 3-岩石条试件; 4-粉碎区; 5-裂隙区; 6-震动区; 7-片落区
霍普金森效应
试验:在岩石压杆的一端安臵炸药,起爆后,靠近炸 药一端的岩石被炸碎,压杆中间部分没有明显的破坏, 而杆件的另一端则被拉断呈许多块。 原理:炸药爆炸后,在岩石压杆中产生沿压杆轴向传 播的爆炸压缩应力波,到达压杆的另一端遇端面(自由 面)将发生反射,形成拉伸应力波反射入压杆,当此拉 伸波的拉应力值高于岩石的抗拉强度时,岩石将从该端 被拉断,随着反射波的传播,拉断的块数增多,直至拉 应力小于岩石的抗拉强度停止
传入岩石中的爆炸载荷(续)
相关主题