电动机正反转原理
第一章 直流电路
1.1 电路及电路模型 1.2. 电流、电位、电压等参数及相互关系 1.3 电路元件 1.4 电路定律及电路基本分析方法 1.5 电路中的电位及其计算方法
1、导体、1绝.缘1电体和路半及导电体路模型
自然界物质的电结构:
= 原子结构中:正电荷 负电荷
原子核 电子
原子核中有质子和中 子,其中质子带正电, 中子不带电。
电路的组成与功能
电路 ——由实际元器件构成的电流的通路。
电路的组成包括:电源、负载、中间环节
电源:电池路等中。提供电能的装置。如发电机、蓄电
电路组成 负载:在灯电等路。中接收电能的设备。如电动机、电
电源和负载之间不可缺少的连接、控 中间环节:制和保护部件,如连接导线、开关设
备、测量设备以及各种继电保护设备 等。
I
I
I
U
I1
I2
P=16-32-24=-40W
所以整个电路为吸收功率的电路
三、电动势 电源力把单位正电荷从电源的负极移到正极所做的功称为
电源的电动势,用E表示,即
E=WS/Q
四、功率与电能
传递转换电能的速率叫电功率, 简称功率,用p 或P 表示。
i dq , u dw
dt
dq
p dw dw dq
dt
dq dt
L
di dt
发生变化时,电感两端才有电压。因此,我们把电感元件称
为动态元件。动态元件可以储能,储存的磁能为:
WL
1 2
Li 2
3. 电容元件
q
C
电容产品实物图
电容元件图符号 0
u
线性电容元件库伏特性
对线性电容元件而言,任一瞬时,其电压、电流的关系也
是微分(`或积分)的动态关系,即: 电容元件的工作方式就是充放电。
绕原子核高速旋转 的电子带负电。
原子核
原子核
原子核
导体的外层电子数很少且距 离原子核较远,因此受原子核 的束缚力很弱,极易挣脱原子 核的束缚游离到空间成为自由 电子,即导体的特点就是内部 具有大量的自由电子。
半导体的外层电 子数一般为4个,其 导电性界于导体和绝 缘体之间。
绝缘体外层电子数通常为8个, 且距离原子核较近,因此受到原 子核很强的束缚力而无法挣脱, 我们把外层电子数为8个称为稳 定结构,这种结构中不存在自由 电子,因此不导电。
实际方向
(b)
a
b
a
b
iab
iba
(c)
(d)
电流的参考方向
(2.1)电位
某一点的电位是指电场力将单位正电荷Q从电场中的某一点移到参考点所做 的功(W)。电位用字母V表示
V=W/Q
(2.2)电压
高中物理学中对电压的定义:电场力把单位正电荷从电 场中的一点移到另一点所做的功。表达式为:
uab
dwab dq
I
I
I
电
流 源
IS
+
模 型
R0I U
RL
_
0
U
0
U
电流源模型的外特性
理想电流源的外特性
实际电流源的内阻总是有限值,因此当负载增大时, 内阻上分配的电流必定增加,从而造成输出电流随负载的 增大而减小。即实际电流源的外特性也是一条稍微向下倾 斜的直线。
两种电源之间的等效互换
等效互换的原则:当外接负载相同时,两种电源模
电气设备的额定值及电路的工作状态
1. 电气设备的额定值
电气设备长期、安全工作条件下的最高限值称为额定值。
电气设备的额定值是根据设计、材料及制造工艺等 因素,由制造厂家给出的技术数据。
2. 电路的三种工作状态
S I=0
RS + + U=US -US -
S I=US÷(RS+RL)
+
RS
RL + U=US-IRS RL
(1)电能
电能的转换是在电流作功的过程中进行的。因此,电 流作功所消耗电能的多少可以用电功来量度。电功:
W UIt
式中单位:U【V】;I【A】;t【s】时,电功W为焦耳【J】
日常生产和生活中,电能(或电功)也常用 度作为量纲:1度=1KW•h=1KV•A•h
1000W的电炉加热1小时;
1度电的概念 100W的电灯照明10小时;
电阻
❖ 理论及时间都证明,导体对电流的通过有一定的阻 碍作用,称为电阻,用字母R表示
❖
❖
R
R=。。。
为什么要在电 路图中预选标出 参考方向?
在电路图上预先标出电压、电流的参考 方向,目的是为解题时列写方程式提供依 据。因为,只有参考方向标定的情况下, 方程式各电量前的正、负号才能确定。
+
I
US
I
1千瓦的发电能力,平均在7000元左右;而节约1千瓦的电
力,大约平均需要投资2000元,不到建设投资的1/3。通
过提高电能效率节约下来的电力还不需要增加煤等一次性
资源投入,更不会增加环境污染。
所以,提高电能效率与加强电力建设具有相同的重要 地位,不仅有利于缓解电力紧张局面,还能促进资源节约 型社会的建立。
I
P1
-
P2
U2
P3
+
+
U3
-
解 P1的电压参考方向与电流参考方向相同, 故 P1=U1I=4×4=16W (发出16W)
P2和P3的电压参考方向与电流参考方向相反, 故
P2=U2I=(-8)×4=-32W (吸收32W)
P3=U3I=6×4=24W (吸收24W)
整个电路的功率P, 设发出功率为正, 吸收功率为 负, 故
元件上的电压、电流关系遵循欧姆定律。电阻元件通过电 流就要发热,消耗的能量为: P ui u 2 i 2 R
R
2. 电感元件
Ψ
L
电感元件图符号 0
i
电感产品实物图
线性电感元件韦安特性
对线性电感元件而言,任一瞬时,其电压和电流的关系为
微分(或积分)的动态关系,即: 显然,只有电感元件上的电流
uL
由于白炽灯中耗能 的因素大大于产生 磁场的因素,因此
R L 可以忽略。
i
产生磁场的电 特性可用电感 元件表征
白炽灯的电
L 路模型可表
示为:
R
理想电路元件是实际电路器件的理想化和近似,其 电特性惟一、精确,可定量分析和计算。
理想电路元件分有无源和有源两大类
无源二端元件
有源二端元件
+
IS
R
L
C
US –
实际加在用电器两端的电压叫实际电压,在实际电压下 的电功率叫实际功率。
只有在实际电压恰好与额定电压相等时,实际功率才等 于额定功率。
例 如图所示为直流电路, U1=4V, U2=-8V, U3=-6V, I=4A, 求各元件接受或发出的功率P1、 P2 和 P3, 并求整个电 路的功率P。
+
U1
-
集总参数元件的特征
1. 在元件中所发生的电磁过程都集中在元件内部进行, 其次要因素可以忽略的理想化电路元件。如前面提到的 无源电路元件R,只具有耗能的电特性;L只具有储存磁 场能量的电特性;C只具有储存电场能量的电特性。
2.对于集总参数元件,任何时刻,从元件一端流入的电 流,恒等于从元件另一端流出的电流,并且元件两端的 电压值是完全确定的。
iC
C
du dt
因此,只有电容元件的极间电压发生变化时,电容支路才有 电流通过。电容元件也是动态元件,其储存的电场能量为:
WC
1 Cu2 2
4. 电源元件
蓄电池 柴油机组 汽油机组
各种形式的电源设备图
任何电源都可以用两种电源
模型来表示,输出电压比较稳
定的,如发电机、干电池、蓄
电池等通常用电压源模型(理想
型对外部电路的电压、电流相等。
I
I
+ US_
a 内阻改并联
+
Uab
Is
=
Us R0
IS
US R0
R0
a
+
Uab
R0
_ 内阻改串联
_
b Us = Is R0
b
两种电源模型之间等效变换时,电压源的数和电流
源的数值遵循欧姆定律的数值关系,但变换过程中内
阻不变。
1.4 电路定律及电路基本分析方法
1、电阻的串联与并联
Q
I= t
…… (1-2)
电流的国际单位制是安培【A】,较小的单位还有毫安
【mA】和微安【μA】等,它们之间的换算关系为:
1A=103mA=106μA=109nA
在电工技术的问题分析中,仅仅指出电流的大小是不够 的,通常规定以正电荷移动的方向为电流的参考正方向。
i 参考方向
i
参考方向
实际方向
(a)
电压源和一个电阻元件相串联
的形式)表示;
US _ +
R0
输出电流较稳定的:如光电池或
晶体管的输出端等通常用电流源模型 (理想电流源和一个内阻相并联的形 式)表示。
IS R0
理想电压源和实际电压源模型的区别
U
S
I
电 压
R0U
模 型
-US
电 压-
RL
理想电压源的外特性
U
理想电压源内阻为零,因此输出电压
1kW h 103 3600 3.6 106 J
所有元件吸收的功率的总和为零。这个结论叫做“电路 的功率平衡”。
练习: 有220V, 100 W灯泡一个, 其灯丝电阻是多少?每天用5h, 一 个月(按30
解 灯泡灯丝电阻为
P U2 R
R U 2 220 2 484 P 100