第一章晶体管低频放大器晶体管低频放大器主要是用来放大低频小信号电压的放大器,频率从几十赫到一百千赫左右一、晶体管的偏置电路为了使放大器获得线性的放大作用,晶体管不仅须有一个合适的静态工作点,而且必须使工作点稳定。
由于温度对管子参数β、Icbo 、Ube 的影响,最终都集中反映在Ic 的变化上,为了消除这种影响,我们通过晶体管偏置的直流或电压的负反馈作用使静态工作点稳定下来,常见的两种偏置电路及工作点稳定原理如下表表一、晶体管放大器的偏置电路设温度T ,直流负反馈过程二、放大器的三种电路形式放大器是一种三端电路,其中必有一个端是输入和输出的共同“地”端,如果这个共“地”端接于发射极的,称为共射电路,接于集电极的,称为共集电路,接于基极的,称为共基电路,这三种有不同的性能,见下表三种电路形式及其性能比较三、图解法所谓图解法,就是利用晶体管输入和输出的特性曲线,通过作图来分析放大器性能的方法,图解法能直观和全面地表明三极管放大的工作过程,并能计算放大器的某些性能指标,现举例子来说明图解法的图解过程,例:已知下图电路中的参数及输入电压Ui=15sinωt(毫伏)要求用图解法确定电路的静态工作点参数Ibq、Icq、Iceq,并计算电压和电流的放大倍数Ku、Kio。
图解法步骤1、确定基极度回路的静态工作点,从输入特性曲线中选取直线段的中点Q(此点的Ubeq=0.7伏,Ibq=40微安)为基极回路的静态工作点,通过选取合适的Eb或Rb(一般通过调整Rb)来满足工作点的要求,2、作直流负载线从上图可得负载线方程为Uce=Ec-IcRc,它的轨迹为一根直线,若令Ic=0,得Uce=Ec=20伏,在横轴上标出N点;又令Uce=0,得Ic=Ec/Rc=20伏/6千欧=3.3毫安,在纵轴上标出M点,连结M、N就是直流负载线。
它与Ib=40微安的输出特性曲线相交于Q,由Q点找出Icq=1.8毫安,Uceq=9伏,Q点就是集电极回路的静态工作点,今后为简便起见,静态的电流、电压不再加下标Q表示,Ic、Ie即Icq、Ieqo3、作波形,在输入特性上作出波形Ut=15sinωt(毫伏),并根据Ut的波形,作出ib、ic及Uce的波形从图解法法得以下几点(1)从波形正弦性可以判断静态工作点Q的选取是否合适。
(2)从图解得知输入电压Ui与集电极输出电压Uo反相,基极电流ib、集电极度电流Ic与输入电压Ui同相。
(3)上述图解法是在空载情况下进行的若考虑负载电阻RL的作用,交流负载应为RL=RC//RL。
由于交流负载线与直流负载线均相交于Q,故通过Q点作出倾斜角a'=(arctg)1/RL的直线M’N’,称为交流负载线。
四、等效电路法与h参数1、简化的h参数等效电路“微变”是指晶体管的Ib、Ube、Ic、Uce在静态工作点Q附近只作微量的变化。
其中Ib、Ube为晶体管的输入变量,面Ic、Uce为输出变量。
若把晶体管看作含受控源的二端口网络,就可以用四个h参数模拟晶体管的物理结构,从而得出晶体管的h参数等效电路如图7-1-4所示h的定义如下:hie=△Ube/△Ib△Uce=0,hfe=△Ic/△Ib△Uce=0hre=△Ube/△Uce△Ib=0,hoe=△Ic/△Uce△Ib=O几个参数有各自的物理意义:hie是输出端短路时的输入电阻,也就是输入特性曲线斜率的倒数;hfe是输出端短路的电流放大系数,即β(共发射极)或a(共基极);hre是输入端开路的内反馈系数,它表示输出电压对输入电压影响的程度;hoe是输入端开路时的输出电导,即为输出特性曲线的斜率由于晶体管工作在低频时,hre和hoe两个参数小到可以忽略不计,通常用hie和hre两个参数模拟低频晶体管电路即可,这叫做简化后的h参数等效电路,如图7-1-3所示,图中的rbe、β即上述的hie、hfe.电流放大系数β(或hfe)可以从输出特性曲线中求出或通过仪器测试出来,输入电阻rbe由下式计算:rbe=rb+(β+1)26(毫伏)/Ie(毫安)式中:Rb为基区电阻,约为几百欧姆,Ie为静态发射极电流求晶体管放大器的微变等效电路的方法如下:(1)晶体管以图7-1-3示出的等效模拟型代替;(2)所有直流电源、隔直电容,旁路电容都看作短路;(3)其它元件按原来相对位置画出,利用等效电路可以求取放大器的放大倍数、输入电阻、输出电阻以及分析放大器的频率特性。
第二章低频功率放大器功率放大是一种能量转换的电路,在输入信号的作用下,晶体管把直流电源的能量,转换成随输入信号变化的输出功率送给负载,对功率放大要求如下:(1)输出功率要大:要增加放大器的输出功率,必须使晶体管运行在极限的工作区域附近,由ICM、UCM和PCM决定见图一。
图一(2)效率η要高:放大器的效率η定义为:η=交流输出功率/直流输入功率(3)非线性失真在允许范围内:由于功率放大器在大信号下工作,所以非线性失真是难免的,问题是要把失真控制在允许范围内,功率放大器按工作状态和电路形式可分成以下几种:(1)甲类功率放大器:在整个信号周期内,存在集电极电流;(2)乙类功率放大器:只有半个信号周期内,存在集电极电流,按电路形式它又可分为:1)双端推挽电路(DEPP)2)单端推挽电路(SEPP)3)平衡无变压器电路(BTL)在实际中,为了克服交越失真,推挽式昌体管电路是工作于甲、乙类状态的。
一、甲类功率放大器图一是甲类功率放大器,负载RL通过阻抗变换器B变成集电极负载RL=nRLo对直流来说,变压器B初级直流电阻和Re均很小,所以直流负载线接近一条垂直线见图一(b)为使放大器输出较大功率,可使交流负载线处于a 点和b点位置:a点的Uce=UCM,而工作点Q处于ab直线中点,通常晶体管的饱和压降和穿透电流都很小,实际上可以认为Icmin=0和Ucemin=0o因此,供给负载的电流和电压振幅分别为:Icm=IcM/2,Ucem=UCM/2式1负载的交流功率(或放大器输出功率)为:PL=(UceM/)×(IcM/)=(IcM/)×(UcM/)=(1/8)IcM×UcM式2工作点Q的集电极电流ICQ和电压UceQ分别为:ICQ=ICM/2,UceQ=Ec=UCM/2式3所以,直流电源的输入功率:PD=IcQ×UceQ=(ICM/2)×(UCM/2)=1/4IcMUcm式4甲类功率放大器的效率为:η=PL/PD=50%式5可见:(1)晶体管的最大集射电压为电源电压EC的两倍。
(2)晶体管静态时耗功率为输出功率的两倍。
(3)甲类放大器的效率最高只有50%。
二、乙类推挽电路图2(a)为乙类推挽电路,由于输出端使用变压器,因而晶体管对地有两个输出端,设电路完全对称,当输入信号Us为正半波时,BG1截止、BG2导通,输出电压UL为负半波,因此,两管轮流导通,一推一挽地工作,故称为推挽电路。
由于两管轮流地工作,所以把两管的输出特性按相反方向叠在一起,两管的交流负载线正好连成直线ab,工作点Q处于直线ab的中点,如图2(b)所示,从图中可看出各电量的关系:(1)如输出变压器的初级和次级绕组的匝数比为n,则每只晶体管的负载电阻RL为:RL=(n/2)RL=(n/4)RL式6而集电极与集电极之间的电阻RCC为Rcc=n RL=4RL式7(2)变压器B2的初级绕组端电压振幅为:Ucem=UceQ≈Ec式8初级绕组电流振幅为:Icm=IcM式9所以输送到初级绕组的功率为:Ps=(Ucem/)×(Icm/)=(1/2)EcIcm式10(3)通过每只晶体管的电流平均值为:Ico=IcM/π式11由直流电源供给的功率为PD=(2Ico)Ec=2×(Icm/π)×Ec式12(4)推挽电路的效率为:η=(Ps/PD)100%={(1/2×Ec×Icm)/[2×(Icm/π)×Ec]}100%≈78.5%式13设计推挽电路时要注意:(1)为避免交越失真,晶体管应具有一定的偏置电流,但不要过大,否则使电路效率降低。
(2)晶体管的最大集电极电压Ucm>2Ec。
(3)晶体管的耗散功率Pcm≥1.2Pc1,其中Pc1为每只晶体管送给变压器B2初级的功率,即Pc1=[(1/2)Pso]。
(4)根据Pc1及Ec1的要求,算出晶体管负载电阻PL及输出变压器的匝数比n。
图2第三章直流放大器直流放大器能够放大直流信号或变化极其缓慢的交流信号,它广泛应用于自动控制仪表,医疗电子仪器、电子测量仪器等。
常用的直流放大电路有单端式直流放大器、差动式直流放大器、调制型直流放大器等。
一、单端式直流放大器单端式直流放大器需要解决级间直流电平配置问题,如下图(a)的电路是利用电阻Re2拉低BG2的射极电位以满足直流电平配置要求(即令Ube2=Uc1-Ue2).下图(b)的电路是利用D1及D2作电平配置。
使BG2、BG3的偏听偏信置电压分别为Ube2=0.3伏、Ube3=0.45伏。
D3起保护作用,避免使BG1基极受到过大的反压,如果前级输出电压主和后级输入电压相差较大,可以利用硅稳压管的稳定电压来代替硅二极管的作用。
下图C的电路是利用较大的Rc1、Rc2来提高集电极电压,以实现前后级直流电平的配置。
下图D的电路是利用PNP(BG1和BG3)与NPN(BG2)的极性相反来进行电平配置于,BG1的输出电流是BG2的输入电流,BG2的输出电流是BG2的输出电流是BG3输入电流,较好地实现了级间耦合,上述四种电路的最大缺点是零点漂移大。
二、差动式直流放大器图2(a)是差动式直流放大电路的一种型式。
它是由BG1、BG2一对特性相同的晶体管组成,而且电路元件也都是对称的。
输入信号人别为Ui1、Ui2;单端输出信号分别是Uc1、Uc2;双端输出为UC1与UC2之差,即UO=U C1-UC2O差动电路具有下列特点:1、具有抑制零点漂移能力差动电路由于管特性相同和电路元件对称,所以当温度升高时,两管的集电极电流将得到同样的增量,即△IC1=△IC20而双端输出为UO=△IC1RC-△IC2RC=0,所以输出没有零点漂移。
2、共模输入时,具有抑制放大能力通常把幅度相等,相位相同的一对输入信号,称为共模信号,由下列电路图A可见,当Ui1=Ui2时,在对称条件下,则双端输出Uo=KUil-KUi2=0,3、差模输入时,具有放大能力通常把幅度相等,相位相反的一对输入信号,称为差模信号。
当Ui1=-Ui2差模输入时,两面三刀管集电极输出分别为Uc1=-KUi1、Uc2=-KUi2;所以,差模放大倍数Kud:Kud=(Uc1-Uc2)/(Ui1-Ui2)=(-Ui1K-Ui1K)/2Ui1=-K=(-)(hfeRc)/(Rs+hie)由于差动电路的双端输入电压、双端输出电压均比单管共射放大电路多了一倍,所以差模放大倍数Kud与单管共射电路的放大倍数相同为提高抑制零漂能力,应使共模放大倍数越小越好,差模放大倍数越大越好,因而利用共模抑制比CMRR*=Kud/Kuc作为评价差动放大电路性能好坏的重要指标。