当前位置:文档之家› 生物医用材料 2

生物医用材料 2

生物医用材料导论一、生物医用材料定义广义的生物材料:一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体内(这种不是本课程研究对象),例如动物皮革用于服装。

我们给生物医用材料明确的定义:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。

生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗。

生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。

二、生物医用材料学科的研究内容1.各种器官的作用;2.生物医用材料的性能;3.组织器官与材料之间的相互作用。

专题一、生物医用材料的生物相容性及其生物学评价第一节、生物相容性概念和原理生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。

生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。

因此,材料的生物相容性优劣是生物医用材料研究设计中首先考虑的重要问题。

生物医用材料与组织、细胞、血液接触时,会产生各种反应,(包括宿主反应(即机体生物学反应)和材料反应)。

材料与机体之间存在反应,会使各自的功能和性质受到影响,不仅使生物材料变形变性,还会对机体将造成各种危害。

下图列出相互影响产生的后果。

多数医用材料很难保持植入时的形状、物理化学性能。

引起生物医用材料变化的因素有:(1)生理活动中骨路、关节、肌肉的力学性动态运动;(2)细胞生物电、磁场和电解、氧化作用;(3)新陈代谢过程中生物化学和酶催化反应;(4)细胞粘附吞噬作用;(5)体液中各种酶、细胞因子、蛋白质、氨基酸、多肽、自由基对材料的生物降解作用。

生物医用材料及装置植入人体后,引起三种生物学反应:组织反应、血液反应和免疫反应。

引起生物体反应的因素有:(1)材料中残留有毒性的低分子物质;(2)材料聚合过程残留有毒性、刺激性的单体;(3)材料及制品在灭菌过程中吸附了化学毒剂和高温引发的裂解;(4)材料和制品的形状、大小、表面光滑程度;(5)材料的酸碱度。

生物相容性的分类生物医用材料的生物相容性分为两类:若材料用于心血管系统与血液直接接触,主要考察与血液的相互作用,称为血液相容性;若与心血管系统外的组织和器官接触,主要考察与组织的相互作用,称为组织相容性或一般生物相容性。

第二节组织相容性组织相容性要求医用材料植入体内后与组织、细胞接触无任何不良反应。

在组织相容性中,人们最关心的两个问题是材料与炎症和材料与肿瘤。

于是就可能有下述三种情况:毒性反应:如果植入物的毒性大,使周围的细胞组织无法正常代谢,导致细胞死亡,产生“非细菌性脓肿”。

其结果是,脓肿组织酸度高,腐蚀性大,将加速对金属表面的腐蚀,而更多的腐蚀产物又加速组织的坏死。

包绕反应:如果植入物体积大,毒性适中,周围组织中的成纤维细胞大量沉积胶原纤维,从而形成一层致密的纤维包绕层,使植入物与组织隔开。

其结果是,一方面金属不再与组织液过多接触,降低了腐蚀速度,另一方面周围组织降低了与金属表面的接触,从而使副作用降低到最低的限度。

活性反应:如果材料体积大但毒性很小,周围组织受影响小,形成的包绕层疏松且薄,包绕层中有血管产生,有时候还可以观察到上皮细胞组织直接与植入物接触。

影响生物相容性的因素:1. 材料的化学成分;2. 表面的化学成分;3. 形状和表面的粗糙度:生物医用材料诱发肿瘤可能与下列因素有关:(1)动物试验证实,引起肿瘤的原因与植入材料的外形有明显的相关性。

(2)与植入材料的埋植方法有关。

连续放置的片状材料恶性肿瘤发生率明显高于打孔放置的片状材料。

(3)与植入材料表面的租糙程度有关。

若材料表面光滑,肿瘤发生潜伏期短;若材料表面粗糙,肿瘤发生潜伏期延长。

(4)被致癌物污染的材料或生物老化时能释放致癌物的材料,植入动物体内能诱发恶性肿瘤。

(5)与植入材料在体内形成的纤维包膜厚度有关。

植入一年时,材料的外包膜厚度超过0.25mm---0.3mm就有可能诱发恶性肿瘸。

(6)材料中残留的有毒或刺激性的小分子物质使局部组织长期受毒或受刺激,可诱发恶性肿瘤。

第三节血液相容性生物材料对血液影响主要有以下几方面:a) 血小板激活、聚集、血栓形成;b) 凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;c) 红细胞膜破坏、产生溶血;d) 白细胞减少及功能变化;e) 补体系统的激活或抑制;f) 对血浆蛋白和细胞因子的影响。

影响血液相容性的因素:1. 材料表面光洁度:表面越粗糙,暴露在血液上的面积就越大,凝血的可能性就增大。

2. 表面亲水性:亲水性材料比疏水性材料有更好的血液相容性。

3. 表面带电性:表面带负电的材料具有更好的血液相容性。

目前使用较多的抗凝血的表面:1. 肝素表面。

肝素是一种糖。

2. 低温裂解碳。

3. 二氧化钛表面,氧化钽表面。

凝血大致过程是:材料与血液接触的数秒内,首先被材料吸附的是血浆蛋白(白蛋白、r-球蛋白、纤维蛋白原等),然后血小板在材料表面粘附、聚集、变形,向血小板血栓形成的方向发展,同时血液内一系列凝血因子相继被激活(凝血系统、纤溶系统被激活),参与到材料表面的血栓形成过程,最终形成红血栓。

生物医用材料与血小扳当血小板与进入血管内的材料接触时,血小板会被激活。

由于血液分子细胞学的发展,已在分子水平上搞清了血小板激活、粘附、聚集、释放反应。

生物医用材料与补体系统补体(complement)是血液中的一群蛋白质。

是存在于正常人和动物血清与组织液中的一组经活化后具有酶活性的蛋白质。

一般认为补体在机体抵御感染中起重要作用。

人体补体系统是由20余种理化性状和免疫特性不同的血清蛋白组成,通常以非活化状态的前体分子形式存在血清中,约占血浆球蛋白总量的15%。

当因某种原因(植入体内的材料)激话补体时、补体各成分便按一定顺序呈链锁的酶促反应,即补体活化。

补体激活对机体产生下面的影响:(1)可引起患者过敏症状。

患者首次透析时出现头痛、恶心、呕吐等症状。

(2)在透析时观察到患者有血氧下降或低血压现象。

这是由于大量嗜中性白细胞聚集于肺毛细血管中,影响肺泡的换氧功能,出现缺氧现象。

(3)C3b将引起白细胞在材料表面粘附,促进血小板聚集,参与血栓的形成。

(4)出现慢性并发症,如易感染、恶性肿瘤发生率增加、软组织钙化,特别是肺泡细胞纤维化、钙化及动脉硬化。

(5)植入物的表面拈附大量的白细胞,是由于C3b结合在材料表面,起到白细胞在材料表面粘附的调理作用。

第四节、生物医用材料的生物相容性评价1、生物学评价项目的选择:不同用途的生物医用材料和医疗器械的生物学评价项目的内容和水平都不相同。

项目选择主要依据医疗器械和材料的用途、接触人体的部位和接触时间。

具体有如下几点:(1)接触部位有体表和体内组织、骨骼、牙齿、血液;(2)接触方式有直接接触和间接接触;(3)接触时间是:暂时接触小于24小时,中短期接触长于24小时至30日,长期接触长于30日;(4)用途:一般的功能、生殖与胚胎发育及生物降解。

第五节骨组织反应用于骨修补和骨替代的材料除了用软组织反应的宿主反应来评价其生物相容性外,还应具备一些特殊的生物学性能:骨生物活性、骨诱导性(osteo-inductive)、骨传导性(osteo-conductive):1、骨生物活性:大部分材料植入骨组织后,在材料与骨组织的界面上存在一层结蒂组织,由胶原纤维组成。

通常,材料生物相容性高,软组织层薄;生物相容性低,软组织层厚。

这类生物材料,被认为为无生物活性,材料与骨的界面结合力较低。

2、骨诱导性:具有骨诱导性的材料,当其被植入在软组织中时,也能在其表面生长出骨组织。

基本原理是材料释放某些元素,诱导软组织中的间充质细胞分化成成骨细胞,再由成骨细胞沉积骨组织。

3、骨传导性:只能在骨组织中,促进骨细胞在材料表面生长并沉积羟基磷灰石的材料,通常被认为具有骨传导性。

就这一点看,骨传导性与生物活性可以等同。

骨传导性不是骨诱导性。

4、影响骨相容性的因素:材料化学性质,尤其是表面的化学性质;材料的表面粗糙度。

5、评价骨相容性的参数:宏观上用材料-骨界面拉脱应力表示,正应力或剪切应力;微观上用材料-骨界面发生直接结合的比例表示。

专题二、生物医用材料表面改性生物材料长期(或临时)与人体接触时,必须充分满足与生物体环境的相容性。

一、表面形貌与生物相容性生物材料的生物相容性除了与材料表面化学状态有关外,还与材料的表面形貌密切相关。

表面平整光洁的材料与组织接触后,周围形成的是一层较厚的与材料无结合的包裹组织。

控制材料表面的粗糙化主要合以下方法:(1)用精密的机械加工方法在材料表面加工出约500μm尺寸的螺线、台阶和孔;(2)用微机械和微刻蚀技术获得3μm-10μm深度且距离和形状均可精确控制的粗糙表面;(3)用等离子体喷徐复型方法及离子束轰击方法获得精确的表面显微形貌。

二、生物医用材料的表面修饰材料表面修饰是材料改性的最直接方法。

进行表面修饰有以下几种方法:1)种植内皮细胞正常血管的血管壁表面内皮细胞层。

是维持血管表面不发生凝血的重要组织。

2)涂布白蛋白涂层材料与血液接触时,首先在材料表面吸附血浆蛋白。

3)聚氧化乙烯表面接枝材料表面具有一端悬挂的长键结构,是材料表面具有良好血液相容性的一个条件。

4)磷脂基团表面将2-甲基丙烯酰氧乙基磷酸胆碱(MPc)接枝到疏水性高分子材料(如聚甲基丙烯酸正丁酯)表面,材料的血液相容性大幅度提高;当在纤维素表面接枝的MPc的摩尔分数达到0.3时,甚至在不加抗凝剂的全血中,血细胞几乎不粘附到树料表面。

三、等离子体表面改性等离子体是一种全部或部分电离的气态物质,含有亚稳态和激发态的原子、分子、离子,并且电子、正离子、负离子的含量大致相等。

1)等离子体表面聚合等离子体表面聚合是对有机气态单体等离子体化,使它产生各类基团,这些活性基团之间以及活性基团与单体之间进行加成反应,形成聚合膜。

2)等离子体表面处理等离子体表面处理主要是用非聚合性的无机气体(如Ar、N2、H2、02)产生的等离子体对高分子材料进行处理,在表面导入各种官能团(如-OH、-OOH等),使材料表面的润湿性和表面张力显著变化,使蛋白质及细胞在材料表面的粘附行为发生变化,进而对材料的血液相容性和组织相容性产生影响。

3)等离子体表面接枝等离子体接枝聚合的过程是:首先将高分子材料进行等离子体表面处理,使表面产生活性基团,形成活性中心,然后与单体接触,引发单体与基体表面进行接枝聚合反应。

四、离子注入表面改性由离子源产生离子,通过质量分析器的磁偏转作用对离子进行选择,只选择一种质量的离子通过,离子经强电场或多级电场加速后由静电透镜聚焦,利用静电扫描器扫描,轰击样品的表面,实现离子注入。

相关主题