高分子材料的制备
例如: 聚氯乙烯是由氯乙烯重复连接而成,其中单 体为[CH2=CHCl],链节为 [CH2-CHCl] ,单体分子量 m=62.5,n为800~2400,M约为50000~150000。
➢ 分子量和分子尺寸的多分散性:
一般高分子主链的单键都可内旋转,由此引起高分子 在空间有无数种排布(构象)。
3
2
➢ 溶液聚合:
1、定义:单体溶解于溶剂中的聚合方法。反应产物溶于 溶剂称为均相聚合;反应产物不溶于溶剂称为非均相聚 合或沉淀聚合。
2、特点: 1)反应粘度小,反应散热快、易于控温,工艺易控制; 2)合成物分子量较低,纯度低,生产效率低,成分不易 控制,生产中应用较少; 3)可用于树脂、胶粘剂的生产。
4
1
C-C键的内旋示意图
乙烯类高聚物的构型(全同立构)
因此,即使分子量相同的分子链,其构象不同,分子 尺寸也不相同。这可以理解为同一分子在不同的时刻可能 具有不同的尺寸,也可理解为分子量相同的不同分子之间 在同一时刻可具有不同的尺寸。上述性质决定了所谓高分 子的分子量和分子尺寸只能是某种意义上的统计平均值。
交联的作用:
1. 使分子在使用时克服分子间的流动,即提高强度 2. 提高耐热性 3. 提高抗溶剂性,即不容易溶解于有机溶剂
例如:电线电缆、橡胶、热固性塑料
➢ 聚合物的三种聚集态结构:
1)晶态结构 线型聚合物固化时可以结晶,但由于分子 链运动较困难,不可能完全结晶。
晶态聚合物实际为晶区(分子有规律排列)和非晶 区(分子无规律排列)两相结构,一般结晶度(晶区所 占有的重量百分比)只有50%~85%,特殊情况可达到 98%。在结晶聚合物中,晶区与非晶区相互穿插,紧密 相连,一个大分子链可以同时穿过许多晶区和非晶区。
粘流态是高聚物成型加工的状态。
塑料与橡胶的差别
室温下聚合物的所处的状态不同
室温下:
塑料:处于玻璃态 橡胶:处于高弹态 产品的分子结构有所不同 塑料:热塑性,分子链呈线性或支化结构 橡胶:交联结构
聚合反应分类
由低分子单体合成聚合物的反应称为聚合反应
1. 元素组成和结构变化 2. 反应机理
连锁聚合反应(Chain Polymerization)
2)非晶态结构 聚合物凝固时,分子不能规则排列,呈
长程无序、近程有序状态。非晶态聚合物分子链的活动
能力大,弹性 和塑性较好。
非晶区
材料的性能呈 各向同性。
晶区
结晶高聚物和非晶高聚物区别
性能参数 结晶高聚物 非晶高聚物
熔点
高
硬度
大
密度
大
韧性
差
耐热性
好
强度
高
化学稳定性
好
低 小 小 好
较差 低 差
➢ 聚合物的形变-温度关系:
➢ 乳液聚合:
1、定义:借助于乳化剂和机械搅拌的作用,将单体分散 在水中形成乳液而进行的聚合反应。 2、乳化剂的作用:
1)作为表面活性剂,使水的表面张力降低,从而增加 单体(油相)在水中的分散能力。
2)乳化剂分子包围因搅拌而形成的油滴周围,形成稳 定 的乳液。
4、特点: 1)由单体、水、引发剂、乳化剂组成; 2)反应溶液粘度低;聚合速度快,反应温度易于控制; 3)所得聚合物的分子量高; 4)乳化剂、分散剂和稳定剂等加入,导致产品纯度较低, 工艺复杂。 5)主要用于合成橡胶、涂料等的生产
(一)线型非晶态高分子化合物的力学性能 此类聚合物在恒定应力下的变形-温度曲线如图所示。Tb为脆化
温度,Tg为玻璃化温度,Tf 为粘流温度,Td为化学分解温度。
1.玻璃态
Tb<T<Tg时,由于温度低,分子热运动能力很弱,高聚物中的整 个分子链和键段都不能运动,只有键长和键角可作微小变化,此时 分子链的状态称为玻璃态。
PE种类 LDPE HDPE 交联PE
链的几何形状 ρ
支化结构 线形结构 交联结构
0.91~0.9 4
0.95~0.9 7
0.95~1.4 0
(%) 60~70 95 -----
拉伸强度σt (kg/cm2) 70~150
210~370
100~210
Tm 最高使用 温度℃
10 80~100 5
13 120 5
➢ 高分子常用的元素 碳:C;氢:H;氧:O;氮:N;氯:Cl; 硫:S;氟:F;
➢ 高分子常用的基团:
腈基:CN;羧基: COOH; 羟基: OH; 酯基: R-COO-R' 烯基:C=C;炔基:C≡C; 苯基:
高分子化合物的命名
以单体名称为基础,在前面加“聚”字
乙烯 丙烯 氯乙烯 甲基丙烯酸甲酯 聚乙烯 聚丙烯 聚氯乙烯 聚甲基丙烯酸甲酯
链式反应,反应需要活性中心。 反应中一旦形成单体活性中心,就能很快传递下去, 瞬间形成高分子。
特征:
聚合过程由链引发、链增长和链终止几步基元反 应组成
反应体系中只存在单体、聚合物和微量引发剂
进行连锁聚合反应的单体主要是烯类、二烯类化 合物
连锁聚 合反应
自由基聚合:活性中心为自由基 阳离子聚合:活性中心为阳离子 阴离子聚合:活性中心为阴离子 配位离子聚合:活性中心为配位离子
---- 135 -
用途: 1. LDPE :薄膜材料、软制品
2. HDPE :硬制品、管材
3.交联聚乙烯:海底电缆、电工器材
eg: 橡胶硫化
未硫化:分子间容易滑动,受力后不能恢复原状 硫化后: 不易滑动, 有可逆的弹性形变 注意:交联度不同,性能也不相同; 如交联度小的橡胶(含硫量
<5%),弹性好;交联度大(20%~30%)的橡胶,弹性差,随着交联 度的增加,机械强度和硬度都将增加,最后失去弹性而变脆.
④ 键接结构:是指单体在形成高分子链时因相互 键接 而造成的各基团之间的相对位置。 例如:单体:CHR-CH2
a:头尾相接 -CHR-CH2-CHR-CH2b:头头(尾尾)相接 -CHR-CH2-CH2-CHRc:无规相接
2)整个高分子链的远程结构 ① 远程结构的研究主要包括分子量及分布;构象两 方面。
结构单体:小分子量
聚 合 物:104~ 107
➢ 线链状结构:
Байду номын сангаас
高分子可以看成是数量庞大
的小分子以共价键相连接而 形成的,如果把小分子抽象
聚四氟乙烯单体(xqd)
为一个“点”,那么绝大多数高分子则可抽象为由千百 万
➢ 链节、链段与聚合度:
链 节:是高分子链的最小结构单元。 链 段:高分子链的独立运动基本单元。 聚合度:链节的重复数目(n)。
热固性塑料和硫化橡胶都是交联高分子。
线型:长径比1000:1,具有良好的弹性和塑性,可溶解 或溶胀,加热可融化或软化;易于加工成形,可重复使 用。热塑性塑料PE、PVC等。
体型:网状结构,不溶不熔,具有良好的耐热性和强度, 但脆性大,弹性塑性低,不能重复使用。热固性树脂— 酚醛树脂等。
PE链几何形状对其性能的影响
取单体简名,在后面加“树脂” 、“橡胶”二 字
如 苯酚 甲醛
酚醛树脂
尿素 甲醛
脲醛树脂
丁二烯 苯乙烯
丁苯橡胶
以高分子链的结构特征命名
O £ -C-NH-
O -C-O-
O -NH-C-O- -O-
聚酰胺 聚酯 聚氨酯 聚醚
商品名:合成纤维最普遍,我国以“纶”作为合成纤维的
后缀
涤纶 丙纶 锦纶 腈纶 氯纶
M0 是结构单元的分子量
单体名 称
乙烯 丙烯
氯乙烯
苯乙烯
异戊二 烯
表1 常用聚合物的单体及化学式
单体结构简式 CH2=CH2
CH2=CHCH3
CH2=CHCl
聚合物
[ CH2CH2 ]
[ CH2 CH ]n CH3
[ CH2CH ]n
Cl
CH2=CHPN
CH2 C CH CH2
CH3
[ CH2CH
在受热或者受力的情况下分子间可以相互移动,因此线型高聚 物可以在适当的溶剂中溶解,加热时可以熔融,易于加工成型。
2. 支化高分子(branching polymer) 与线形高分子的化学性质相似,但物理机械性能不同,线
形分子易于结晶,故密度,熔点,结晶度和硬度方面都高于 前者。
支化破坏了分子的规整性,故结晶度大大降低。
高分子的强度与分子量密切相关
C B
强
度
A
聚合度
A 点是初具强度的最低聚合度,A点以上强度随分子链迅速 增加
B 点是临界点,强度增加逐 渐减慢 C 点以后强度不再明显增加
不同高分子初具强度的聚合度和临界点的聚合度不同, 如
➢ 物质结构的多层次性:
1)链结构单元的近程有序 ① 高分子链的化学组成: 碳链高分子 杂链高分子(C与O、S和N等元素形成共价键) 元素高分子( C与Si、B、P等元素形成共价键) 梯型和双螺旋型高分子 ② 侧基和端基 ③ 支化和交联(支化表现为多个端基)
逐步聚合(Step Polymerization) 在低分子转变成聚合物的过程中反应是逐步进行的
特征:
聚合体系由单体和分子量递增的中间产物所组成 大部分的缩聚反应(反应中有低分子副产物生成)都属于逐步聚合 单体通常是含有官能团的化合物
两种聚合机理的区别:
1、聚合时间:平均每一个分子链增长所需要的时间 连锁聚合:瞬时聚合成大分子,延长聚合时间提高转化率,对分子量影响不 大;逐步聚合:逐步进行,延长聚合时间提高分子量,转化率一开始就比较高; 2、活性中心: 连锁聚合:少量活性中心,单体和聚合物间不能聚合; 逐步聚合:无活性中心,单体和聚合物间可聚合。
② 构象:单键内旋转导致分子在空间的不同形态。
分子 热运动
键的旋转 角的变化
结构取向 的变化