当前位置:文档之家› 海明码生成与校验

海明码生成与校验

沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:海明码生成与校验电路的设计院(系):计算机学院专业:网络工程班级:84010202学号:2008040102061姓名:刘炎明指导教师:毛艳娥沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (1)1.3设计环境 (3)第2章详细设计方案 (4)2.1设计与实现 (4)2.1.1设计方案 (4)2.1.2器件的选择与引脚锁定 (5)2.2功能模块的设计与实现 (6)2.2.1生成模块的设计与实现 (7)2.2.2 错误模块的设计与实现 (8)2.2.3 校验模块的设计与实现 (10)2.3仿真调试 (12)第3章编程下载与硬件测试 (15)3.1编程下载 (15)3.2硬件测试及结果分析 (15)参考文献 (18)附录(程序清单或电路原理图) (19)第1章总体设计方案1.1 设计原理海明校验码是由理查得·海明(Richard Hanmming)于1950年提出的,它不仅具有检测错误的能力,同时还具有给出错误所在的准确位置的能力,这在通信领域有着很广泛的应用。

海明码是奇偶校验的一种扩充。

它采用多位校验码的方式,在这些校验位中的每一位都对不同的信息数据位进行奇偶校验,通过合理地安排每个校验位对原始数据进行校验位组合,可以达到发现错误,纠正错误的目的。

(1)数据位和校验位的关系假设数据位有m位,如何设定校验位k的长度才能满足纠正一位错误的要求呢?我们这里做一个简单的推导。

k位的校验码可以有2^k个值。

如果能够满足:2^k–1>=m + k (m+ k为编码后的总长度),在理论上k个校验码就可以判断是哪一位(包括信息码和校验码)出现问题。

(2)海明码的编码规律若海明码的最高位号为m,最低位号为1,即H m H m-1…H2H1,则海明码的编码规律通常是:a.校验位与数据位之和为m,每个校验位P i在海明码中被分在2i-1的位置,其余各位为数据位,并按从低向高逐位依次排列的关系分配各数据位。

b.海明码的每一位H i(包含数据位和校验位本身)由多个校验位校验,其关系是被校验的每一位位号要等于校验它的各校验位的位号之和。

这样安排的目的,是希望校验的结果能正确反映出出错位的位号。

1.2 设计思路(一)海明码的生成:因为要求的是8位的二进制数据,所以此处的k为8,按照数据位和校验位的对应关系,r应为5,由于总校验位只是检测两位出错还是一位出错,因此设计时不必考虑它的值,设r为4,故海明码的总位数为12,可表示为:H12——H1,4个校验位P4~P1对应的海明码位号分别为:H8/H4/H2/H1,则有如下排列关系:D8D7D6D5P4D4D3D2P3D1P2P1 按照海明码的原理得出如下的表格:P1=D1⊕D2⊕D4⊕D5⊕D7P2=D1⊕D3⊕D4⊕D6⊕D7P3=D2⊕D3⊕D4⊕D8P4=D5⊕D6⊕D7⊕D8(二)海明码的校验:海明码校验函数(S函数)及校验过程 <偶校验>S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7S3=P3⊕D2⊕D3⊕D4⊕D8S4=P4⊕D5⊕D6⊕D7⊕D81.3 设计环境·硬件环境:伟福COP2000型计算机组成原理实验仪、XCV200实验板、微机;·EDA环境:Xilinx foundation f3.1设计软件、COP2000仿真软件。

图1.1Xilinx foundation f3.1设计平台第2章详细设计方案2.1 设计与实现实现海明码的生成与校验逻辑功能,采用原理图设计输入方式完成,电路实现基于XCV200可编程逻辑芯片。

完成原理图的设计后,把输入/输出信号安排到XCV200指定的引脚上去,实现芯片的引脚锁定。

2.1.1设计方案原理图主要由生成,错误模块和校验三个模块组装而成的一个完整的设计实体。

图2.1 生成模块图2.2 错误模块图2.3 校验模块2.1.2器件的选择与引脚锁定(1)器件的选择由于硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xlinx XCV200可编程逻辑芯片。

(2)引脚锁定把顶层图形文件中的输入/输出信号安排到Xlinx XCV200芯片指定的引脚上去,实现芯片的引脚锁定。

2.2 功能模块的设计与实现海明码生成与校验设计电路是由3个模块组成,其中生成模块是由8个输入端输入海明码的8位数据位,经异或门求得校验位P1,P2,P3,P4,由此输出12位海明码;错误模块是由三八译码器来改变输入数据的某一位,从而产生错误的海明码;校验模块是对错误的数据进行纠正修改。

2.2.1生成模块的设计与实现(1)元件结构海明码生成模块,原理是通过输入的数据I1~I8按照公式:P1=D1⊕D2⊕D4⊕D5⊕D7,P2=D1⊕D3⊕D4⊕D6⊕D7,P3=D2⊕D3⊕D4⊕D8,P4=D5⊕D6⊕D7⊕D8,生成了4位校验码P1/P2 /P3/P4,从而得出了12位海明码。

图2.4生成模块内部电路(2)功能仿真对生成模块进行功能仿真,验证其功能的正确性。

图2.5SHENGCHENG模块仿真结果分析:输入I1-I8为10100000,输出O1-O12为101101000000,结果是正确的海明码。

2.2.2 错误模块的设计与实现(1)元件结构本模块的原理是通过3线8线译码器的3进1出,输出一个1,与8位输入数据中的一位异或,使之发生错误,从而得出一组错误的数据。

图2.6错误产生模块内部电路(2)功能仿真对创建的ERROR元件进行功能仿真,验证其功能的正确性图2.7ERROR模块仿真结果分析:输入L1-L3为000,输入I1-I8为10100000,输出K1为0,产生一位错误。

2.2.3 校验模块的设计与实现(1)元件的内部结构原理是通过公式:S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7,S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7,S3=P3⊕D2⊕D3⊕D4⊕D8,S4=P4⊕D5⊕D6⊕D7⊕D8,连成的电路对数据进行校验,判断数据是那一位出错,并对出错的那一位与错误数据异或,从而得出正确的数据。

图2.8校验模块内部电路(2)功能仿真对校验模块进行功能仿真,验证其功能的正确性图2.9校验模块仿真2.3 仿真调试仿真调试是为了验证设计电路逻辑功能的正确性,输入8位二进制数据位生成12位海明码,中间经三八译码器来改变一位数据位,经校验电路修改,最后输出正确的8位二进制数据位。

(1)创建仿真信号在进行仿真时,输入数据位用了上面的两组数据。

第一组数据,I1~I8为10100000,生成的海明码O1~O12为10110100000 第二组数据,I1~I8为10010001,生成的海明码O1~O12为001000110001 这两组数据又经三八译码器改变其中一位错的数据输入到校验电路里,经校验后输出原本的数据位,最终实现了海明码生成和校验功能。

(2)仿真结果功能仿真波形结果如图2.10、图2.11所示,仿真数据结果如表2.3所示。

对表中内容进行计算,可以看出功能仿真结果是正确的,进而说明此次电路设计成功。

表2。

3:图2.10 第一组数据功能仿真波形结果图2.11 第二组数据功能仿真波形结果程下载与硬件测试第3章编程下载与硬件测试3.1 编程下载利用Xilinx ISE的编程下载功能,下载编译我的工程,从而得到的*.bin文件,即可下载到XCV200实验板的XCV200可编程逻辑芯片中,完成编译下载。

3.2 硬件测试及结果分析利用XCV200实验板进行硬件功能测试。

海明码数据位的输入数据通过XCV200实验板的输入开关实现,输出数据通过XCV200实验板的LED指示灯实现,其对应关系如表3.1所示。

表3.1 XCV200实验板信号对应关系输入数据,逐个测试输出结果,即用XCV200实验板的开关K0、K1输入数据,同时观察LEDA和LEDB的输出,得到如表3.2所示的硬件测试结果。

表3.2 硬件测试结果图3.1 第一组数据cop2000仿真下载结果结果分析:输入K1:1-K1:3为000,对应L1-L3,输入I1-I8为10010001,输出B7—A4为001000110001对应O1-O12。

图3.2 第二组数据cop2000仿真下载结果结果分析:输入K1:1-K1:3为000,对应L1-L3,输入I1-I8为10010010,输出B7-A4为111100110010对应O1-O12。

签。

参考文献参考文献[1] 白中英,计算机组成原理(第三版)..北京:科学出版社,2000[2] 王爱英.计算机组成与结构(第4版)[M].北京:清华大学出版社,2006[3] 范延滨,微型计算机系统原理、接口与EDA设计技术(第三版).北京:北京邮电大学出版社,2006沈阳航空航天大学课程设计报告附录附录(程序清单或电路原理图)总电路原理图沈阳航空航天大学课程设计报告。

相关主题