SA335-P92钢焊后热处理方法及工艺研究林志华朱顺聚顾文彬(上海电力建设有限责任公司,上海市高邮路68号,200231)摘要:本文对大口径厚壁管道焊后热处理工艺进行了较为深入的研究。
研究中对比了电阻加热设备与电感应加热设备在对大口径厚壁管热处理时造成内外壁温差的试验,试验数据表明目前电站广泛使用的电阻加热设备热处理时会造成局部内外壁温差过大的现象,这对热处理温度特别敏感的P92钢十分不利,而采用先进的电感应加热设备内外壁温差<20℃,可确保P92钢焊后热处理整个焊接接头性能的均匀性,特别是焊缝根部的冲击韧性。
本文还重点介绍了Proheat35型电感应加热设备在外高桥三期工程中对P92钢热处理的应用及工艺的改进。
关键词:P92钢、热处理、电阻加热、电感应加热1.大口径厚壁管热处理工艺研究1.1现电站安装施工中大口径厚壁管道焊后热处理设备应用情况自上世纪八十年代起,电站安装施工中大口径厚壁管道焊后热处理设备,由原工频、中频电感应热处理设备逐渐被柔性陶瓷电阻加热设备所取代,现使用的柔性陶瓷电阻加热设备又配备了微电脑控温装置,目前已是电站安装单位热处理的主力设备。
原工频或中频热处理设备,由于其加热块笨重,操作不便,中频热处理后局部有集肤效应现象,加热块又为裸露件,操作时很不安全,加上设备结构复杂、成本高、维修困难,逐渐被淘汰。
而柔性陶瓷加热设备操作便捷、通用性强,并配有微电脑控温装置、能自动控制热处理设备的输出电流,使工件热处理符合规范要求,所以施工单位现场热处理全部采用柔性陶瓷电阻加热设备。
柔性陶瓷电阻加热设备 DWK系列示意图见图1、图2,原工频电感应加热设备见图3。
1.2 柔性陶瓷电阻加热法与电感应加热法的原理及其对P92钢大口径厚壁管道焊后热处理时可能存在的问题(1)柔性陶瓷电阻加热法是辐射加热。
其加热原理是从加热器发出的热能以辐射的形式传到工件的外表面,依靠金属导热,从外表面向内部传导。
(2)电感应加热是钢材在交变磁场中产生感应电势,感应电势在金属内部产生涡流和磁滞,在涡流和磁滞的作用下,使钢材发热。
(3)P92钢的最佳热处理温度为760±10℃,也就是说,热处理温度的上限为770℃,下限为750℃。
热处理温度范围相对比较窄,在这一温度范围内,P92钢焊接接头焊后热处理才能获得良好的综合性能,特别是焊缝的冲击韧度。
(4)目前,现场焊后热处理广泛采用的柔性陶瓷电阻加热设备,从原理上分析,这种从外表面向内部传导热能的方法,对大口径厚壁管很可能会造成内、外壁温差过大的现象,而这种过大的温差对温度特别敏感的P92钢而言,是对冲击韧度不利的。
而电感应加热法,从原理上讲,它的热源来自由金属内部产生的涡流和磁滞作用使材料发热,这种热处理法对大口径厚壁管造成的内、外壁温差应该小,对温度敏感的P92钢焊接接头热处理应该有利,见图4。
图4 电感应加热原理1.3柔性陶瓷电阻加热和工频电感应加热在Φ420×70mm、长680mm 的P22管上热处理试验(1)试验目的a. 测两种加热方法的内、外壁温差b. 测等效点的温度注:等效点—根据shifrin的研究结果,只要加热带的宽度在5倍壁厚以上,外表面距焊缝中心线的轴向距离为t的位置大致与内表面焊缝根部的温度相等。
(t为壁厚)(2)热电偶布置在试验管的同一截面上共布置了七个测温点,在离截面一倍壁厚70mm处设一等效点、50mm和90mm处再各设一个点,共10个测温点。
测温点布置示意图见图5所示,实际的热电偶布置情况如图6所示。
图6 Φ420×70mm管上热电偶的布置情况(3)柔性陶瓷电阻加热法a. 工件加热至770℃×4h,测得的各点温度如表1所示。
加热宽度500mm,管两端用保温棉堵上。
表1:加热至770℃×4h,各点的温度值测点编号温度(℃)测点编号温度17706740277077403770873847709738572010738b. 测得的管内、外壁温差及等效点(#8)与内壁(#5)的温差:#1点 - #5点 = 770℃ - 720℃ = 50℃#3点 - #6点 = 770℃ - 740℃ = 30℃等效点#8点 - 内壁#5点 = 738℃ - 720℃ = 18℃柔性陶瓷电阻加热实际情况照片如图7所示。
图7 柔性陶瓷电阻加热设备 DWK系列(4)工频电感应加热a. 工件加热至765℃×4h,测得的各点温度如表2所示。
加热宽度500mm,13匝,管两端用保温棉堵上。
表2:加热至770℃×4h,各点的温度值测点编号温度(℃)测点编号温度17656760276577493765875947709760574710760b. 测得的管内、外壁温差及等效点(#8)与内壁(#5)的温差:#1点 - #5点 = 765℃ - 747℃ = 18℃#3点 - #6点 = 765℃ - 760℃ = 5℃等效点#8点 - 内壁#5点 = 759℃ - 747℃ = 12℃工频电感应加热实际情况照片图8图8 工频电感应加热实际情况(5)结论a. 两种加热法在水平固定位置上测得的同一截面周向外壁温度基本相同(#1~#4点的温度),而径向方向上的内壁温度处于不均匀状态,其内、外壁温差因加热方法不同相差悬殊。
b. 在试验条件相同的情况下,工频电感应加热法测得的内外壁温差明显小于柔性陶瓷电阻加热法。
工频电感应加热法测得的内外壁温差﹤20℃,这对焊后热处理温度要求特别敏感的P92钢十分重要。
c. 等效点#8点的温度与管内壁#5点的温差,工频电感应法比柔性陶瓷电阻加热法温差值小,但均大于10℃以上。
d. 试验测得的数据证明,电感应加热法无论从理论还是实践上,该方法在大口径厚壁管的热处理效果要优于目前广泛使用的柔性陶瓷电阻加热法。
1.4 Preheat 35型电感应加热设备与柔性陶瓷电阻加热设备在Φ558×90mm P22管上的热处理试验(1)前一轮的热处理试验,由于是在Φ420×70mm、长680mm的一段短管上进行的,与外高桥三期工程主蒸汽管Φ546×92mm相差甚远,所得的数据代表性还不够强。
同时,采用的工频电感应加热设备极其落后,无法在工程中加以应用。
但前一轮试验有一点是可以肯定的,那就是电感应加热法对大口径厚壁管测得的内外壁温差要比现在广泛使用的柔性陶瓷电阻加热设备来得小,对焊后热处理温度特别敏感的P92钢十分有利。
(2)Proheat 35型电感应加热设备Proheat 35型电感应加热设备是由美国米勒公司生产的,当今世界上最先进的热处理设备之一。
该设备是电感应加热,其原理是:热源从工件的近表面发热,向工件内部传导。
其功率为35kW,频率0.5~3万HZ,属高频感应加热。
加热时,输出电流、电压、频率和功率通过微电脑自动匹配,所有数据均为电脑储存。
加热导线为柔性线,内通水冷却。
保温棉为耐高温、可重复使用的环保型产品,见图9。
图9 Proheat 35型电感应加热设备(3)为了使这一轮的对比试验更接近实际,测得的数据更具有代表性,我们从现场运来了一根长3.15m,规格为Φ558×90mm的P22材质大口径管。
该试验管的规格与外高桥三期工程主蒸汽管Φ546×92mm非常接近,试验所测得的数据应该很有说服力,见图10。
热电偶的布置:在试验管Φ558×90mm,长3.15m的一端800mm处的截面上,在平焊和仰焊位置的内、外壁各布置一个测温点。
距截面一倍壁厚90mm处布置一个等效测温点。
热电偶布置示意图如图11所示,实际的热电偶布置情况见图12。
图10 Φ558×90mm、3.15m P22大口径管e. 重复试验测得的各点数据,参见表4。
表4:加热至770℃×2h 时,测得各点的数据测温点 #1#2#3#4#5温度 770℃770℃754℃756℃768℃f. 管内、外壁温差:#1点 - #3点 = 770℃ - 754℃ = 16℃#2点 - #4点 = 770℃ - 756℃ = 14℃g. 等效点#5与#3点的温差:#5点 - #3点 = 768℃ - 754℃ = 14℃ #5点 - #3点 = 769℃ - 750℃ = 19℃实际测得的数据照片见图13。
e. 重复试验测得的各点数据,参见表4。
表4:加热至770℃×2h 时,测得各点的数据测温点 #1#2#3#4#5温度 770℃770℃754℃756℃768℃f. 管内、外壁温差:#1点 - #3点 = 770℃ - 754℃ = 16℃#2点 - #4点 = 770℃ - 756℃ = 14℃g. 等效点#5与#3点的温差:#5点 - #3点 = 768℃ - 754℃ = 14℃(5)柔性陶瓷电阻加热设备(DWK-180)在Φ558×90mm管上测得的各点数据a. 加热宽度为640mm,管两端用保温棉堵住,中间形成1400mm长的小室。
b. 当试验加热至769℃×3h时,测得各点的数据如表5所示。
表5:加热至769℃×3h 测得各点的数据测温点 #1#2#3#4#5温度 769℃ 769℃ 736℃ 715℃ 769℃c. 管内、外壁温差:#1点 - #3点 = 769℃ - 736℃ = 33℃#2点 - #4点 = 769℃ - 715℃ = 54℃d. 等效点#5点与#3点的温差:#5点 - #3点 = 769℃ - 736℃ = 33℃(6)结论a. Proheat 35型电感应加热设备与柔性陶瓷电阻加热设备,在Φ558×90mm管水平固定位置上测得的同一截面上周向外壁温度相同,温度属均态分布。
而径向方向(壁厚方向)内壁温度处于不均匀状态,其内外壁温差因加热方法不同相差悬殊,电感应加热,管内外壁温差远比柔性陶瓷电阻加热小。
这一现象与第一轮试验结果完全吻合。
b.Proheat 35型电感应加热设备在Φ558×90mm管上试验所测得的内外壁温差﹤20℃,而柔性陶瓷电阻加热设备在相同试验条件下测得的内外壁温差最小为33℃,最大为54℃。
c. 试验表明如在外高桥三期工程主蒸汽管Φ546×92mm的P92钢焊后热处理时,采用Proheat 35型电感应加热设备,能有效地保证P92大口径厚壁管热处理温度控制在760±10℃范围之内,从而确保P92钢整个焊接接头内外部的力学性能,特别是焊缝根部的冲击韧度。
d. Proheat 35型电感应加热设备属高频感应加热,其集肤效应现象在试验中并不明显。
e. 试验结果表明,等效点的测试温度值与内壁测试温度值存在着较大的差距,等效点的温度实际上是受多种因素影响,如加热方法、管径、壁厚、管内气流等。