当前位置:文档之家› 磁光克尔效应研究.

磁光克尔效应研究.

磁光克尔效应研究摘要:当光电子技术日益在新兴高科技领域获得广泛应用的同时,以磁光效应原理为背景的磁光器件显示了其独特的性能和广阔的应用前景,引起了人们的浓厚兴趣。

表面磁光克尔效应,作为测量材料磁光特性特别是薄膜材料的物性的一种有效方法,已被广泛应用于磁有序、磁各向异性、多层膜中的层间耦合以及磁性超薄膜的相变行为等问题的研究。

本文简单介绍了什么是磁光克尔效应、磁光克尔效应的发展、以及表面磁光克尔效应作为一种测量方法的原理、实验装置和发展。

关键词:磁光克尔效应;磁光特性;表面磁光克尔效应1.引言1845年,Michael Faraday发现当给玻璃样品加一磁场时,透射光的偏振面将发生旋转,首次发现磁光效应。

随后他在处于外加磁场中的金属表面做反射实验,但由于他所谓的表面不够平整,因而实验结果不能使人信服。

1877年John Kerr在观察偏振光从抛光过的电磁铁磁极反射出来时,发现了磁光克尔效应(magneto-optic Kerr effect)。

1985年Moog和Bade r两位学者对铁超薄膜磊晶成长在金单晶(100)面上的磁光克尔效应做了大量实验,成功得到一原子层厚度磁性物质的磁滞回线,并提出SMOKE作为表面磁光克尔效应(surface magneto-optic Kerr effect)的缩写,用以表示应用磁光克尔效应在表面磁学上的研究。

由于此方法磁性测量灵敏度达一原子层厚度,且此装置可配置于超高真空系统上面工作,所以成为表面磁学的重要研究方法。

2.磁光克尔效应图1 克尔效应示意图一束线偏振光从具有磁矩的介质表面反射时,反射光将是一束椭圆偏振光,而且偏振方向将发生产生旋转。

相对于入射的线偏振光(以椭圆的长轴为标志)的偏振面方向有一定的偏转,偏转的角度为克尔转角,短轴与长轴的比为椭偏率,如图1所示。

复磁光克尔角定义为:,其大小正比于样品的磁化强度。

表1给出了常见的磁性物质在室温下的磁光克尔转角的数值。

克尔效应产生的原因如下:当磁性物质在外加磁场作用下磁化或铁磁性物质自发磁化,就让物质本身的折射率造成磁双折射(magnetic birefringence)的现象,即其右旋折射率和左旋折射率不相同。

一束线偏振光可以分解成两个振幅相同的左旋光与右旋光,而左旋光与右旋光在磁性材料中有不同的吸收和反射系数,不同的传播速度使得两种光产生相位差,同时也能造成振幅上的不同。

这样,两个振幅不同、且具有相位差的左旋光与右旋光在反射后就会叠加成一束椭圆偏振光。

表1 常见磁性物质在室温下的磁光克尔转角一般情况下,克尔磁光效应分极向克尔磁光效应、纵向克尔磁光效应与横向克尔磁光效应(按磁化强度同入射面的相对取向不同划分),如图2所示。

极向克尔磁光效应是指磁化强度矢量M与介质界面垂直时的科尔效应。

这是三种克尔效应中,克尔转角最大、最明显的。

纵向克尔磁光效应指的是磁化强度矢量M 既平行于光的入射面,也平行于介质表面时的科尔效应。

横向克尔磁光效应是指磁化方向平行于材料表面但垂直于反射平面的克尔效应。

横向克尔磁光效应中事实上仅仅是反射率有微小的变化,没有偏振面的旋转。

其最大的优点在于:即使入射光是非极化光源经由磁性介质反射后,其反射光的振幅也是磁光强度矢量的线性函数。

图2极向、纵向和横向克尔效应示意图3.磁光克尔测量技术3.1工作原理当一束线偏振光入射到不透明的样品表面时,如果样品室各向异性的,反射光将变成椭圆偏振光,并且偏振方向与入射光的偏振方向相比会发生一定角度的偏转。

如果此时样品还处于铁磁状态,铁磁性还会导致反射光偏振面相对于入射θ,如图3所示光的偏振面额外转过一个小的角度,此角即为磁光克尔旋转角K即椭圆长轴和参考轴之间的夹角。

一般而言,由于样品对P偏振光和S偏振光的的吸收率不同,即使样品处于非磁状态,反射光的椭偏率也要发生变化,而样ε,即品的铁磁性会导致椭偏率有一个附加的变化,这个变化称为克尔椭偏率K椭圆长短轴之比。

图3 表面磁光克尔效应原理图3.2磁光调制法早期测量中应用较多的是磁光调制法,实验装置如图4所示。

在频率为ω的外加交变磁场或电场的驱动下入射电场的偏振面发生微小的调制变化。

最终分析θ。

测从检偏器出来并被检测的光电信号中的交流成分可得到要测量的克尔角k量装置中采用调制锁相技术,因此可获得较高的性噪比。

但是要通过调节检偏器的方位角使信号幅度最大来确定克尔旋转角,带来一定的测量误差和不便。

高次频信号的存在使波形偏离正弦或余弦变化规律,给波形的判断带来困难。

同时调制器的品质因数和使用条件不同也会影响数据的稳定性。

这种方法多用于单波长和单参数克尔角的测量。

图4磁光调制测量装置示意图 3.3旋转检偏器的位相偏移测定法旋转检偏器的方法是通过测量检偏器的方位角在不同位置时光信号强度的变化来求得磁光克尔转角和椭偏率吗,实验装置如图5所示。

此方法实验图像清楚,所用光学元件少,避免了某些场合使用特种光学元件所引起的间接测量误差,光谱测量的范围较宽,系统可以自行定标,是一种磁光效应的绝对测量方法,特别适用于材料磁光效应光谱特性的研究。

整个系统易于实现自动化操作,使测量过程更加简单,数据的密度和质量也得到相应的提高。

此装置对一般的磁光样品,绝对测量的准确率可达到0.01。

图5旋转检偏器的实验装置示意图 3.4消光法1996年,朱伟荣对Bader 和Chappert 等人的方案做了修改,提出了一种新的SMOKE 系统,图6为系统的光路示意图。

在偏振镜后面加一分光镜,将光束一分为二,参考光束直接直接送入探测器1,信号光束经过样品和偏振镜2后送1.激光器;2.光阑;3.起偏器;4.调制元件;5.调制信号源;6.调制线圈;7.样品;8.磁场;9.检偏器;10.测角仪; 11.光电探测器和信号放大器; 12..示波器;1. 石英光纤;2. 准直镜;3. 光阑;4. 起偏器;5、6. 反光镜;7. 样品;8. 熔石英1/4波长器9. 步进电机;10.检偏器;11.防震光学平台入探测器2。

通过测量信号光束和参开光束的比值来消除激光器光强和偏振面不稳定造成的影响。

系统的灵敏度可达0002.0。

.0~0001图6 SMOKE系统光路图4.磁光克尔效应的应用4.1在现代数据存储技术中的应用目前无论是在工业上科技、资讯的高度发展对储存元件记录密度的需求越来越高,满足此种要求的办法是利用克尔效应研发制造磁光记录光碟和硬盘。

通过一束激光聚焦在特定的磁光记录介质薄膜上就能够实现磁光记录。

写入信息时,记录介质位于特定的外加磁场中,因为磁光介质有良好的垂直于膜面的各向异性,当具备一定条件时,这种介质中的磁畴的磁化方向就能与外加磁场方向相反或一致。

由此,利用这种介质局部磁化方向的正、反即可代表“0”和“1”两类信息。

磁光记录信息的读取就是利用磁光克尔效应实现的。

拿某个写入信息后的介质(磁光介质)来说,介质(磁光介质)中的磁畴的磁化方向有正反两种类型。

一束激光照射在介质(磁光介质)表面的某一位置时,假如该处对应的磁畴为反θ;反之该处对应的磁畴为正向磁化,则反射光向磁化,则反射光的克尔转角为kθ。

如果在通过介质(磁光介质)表面反射的反射光路上放一探的克尔旋转角为k测器,就能够容易地检测出反射处是反向磁化还是正向磁化,即读出了“0”和“1”。

4.2研究材料表面的磁学特性及其用途表面磁性和由数个原子层所构成的超薄膜以及多层膜磁性,就是目前凝聚态物理领域中的一个非常重要的热点研究课题。

表面磁光克尔效应(SMOKE)更成为表面科学中磁性测量的主要工具,业已被大量、广泛地应用在磁有序、磁各向异性以及层间耦合等问题的研究方面。

SMOKE通过测量样品的克尔转角和克尔椭偏率随磁场的变化关系,最终给出样品的磁滞回线。

从磁滞回线上可以定性和定量的分析矫顽力、剩余磁化强度、最大磁化率、磁滞损耗等。

和其他的磁性测量手段相比较,SMOKE具有测量灵敏度极高(国际上现在通用的SMOKE 测量装置它的探测灵敏度可达亚单原子层的磁性,即相当于能够测量到小于千分之一度的克尔旋转角)、非接触式测量、局域磁性测量以及易于和其它设备(尤其是真空系统)兼容等优点。

目前,应用元件尺寸快速向轻薄短小发展,元件中界面特性与高品质界面的制作是非常重要的,通过磁光克尔效应对磁性超薄膜的研究不但带动相关科学知识的突破,对于微小元器件的设计开发提供重要参考资料,更能有效地提升电子工业尺寸纳米化的进程。

4.3用于观察铁磁材料中的磁畴磁光克尔效应的另外一个重要应用就是观察铁磁材料中难以捉摸的磁畴。

由于不同磁畴区的磁化强度的取向不同,使入射偏振光产生方向、大小不同的偏振面旋转,再经过检偏器后就出现了与磁畴相应的明暗不同的区域。

利用现代技术,不但可进行静态观察,还可进行动态研究。

这些都导致一些重要发现和关于磁畴、磁学参数的有效测量。

4.4在自旋电子学中的应用磁光克尔效应对固体的自旋相关的电子能带结构相当敏感,因此,磁光克尔效应是一种独特的研究磁性材料中电子行为的实验方法。

结语从发现磁光克尔效应到现在,磁光克尔法作为一种测量材料磁性特别是超薄膜磁性材料物性的有效方法,已成为表面刺血研究的重要手段,被广泛应用于磁有序、磁各向异性、磁畴结构、多层膜层间耦合和磁性超薄膜像变行为等问题的研究。

为获得理想的和可供实用的高性能磁光器件,对磁光材料做细致深入的光谱学特性的测量研究和分析具有基础和应用上的双重意义,无疑磁光克尔效应是首选地测量手段。

如何改进当前的测量方法,开发新的磁光克尔效应测量方法,以简便快捷的进行样品磁光特性的测量,并提高测量的精度,是此领域当前和以后的主要研究方向。

参考文献:[1] M.D.Schultz,T.Xue,M.H.Kryder.Direct observation of magnetization dynamics in spinningmagneto-optic discs [J]. J.Appl.Phys,1993,73(10): 5776-5781.[2] D.L.Qian,L.Y.Chen,W.M.Zheng.A Method to Measure Completely the Magneto-optical Kerr[J].ACTA OPTIC SINICA,1999,19(4):24-31[3] 刘湘林,刘公强.慈光材料和磁光器件[J].北京:北京科学技术出版社,1900,221-227.[4] 朱伟荣,董国胜,陈艳等.一种测量薄膜磁性的表面磁光克尔效应装置[J].真空科学与技术,1997,17 (4): 243-246.[5] 刘平安,陈希江,丁菲.一种新型表面磁光克尔效应测量系统[J] .辽宁师范大学学报:自然科学版,2007,37 (1): 24-29.[6] Z.Q.Qiu,S.D.Bader, Rev.Sci.Instrum., 2000, 71: 1243.[7] R.Mattheis,G.Quednau, J. Magn.Magn.Mater., 1999, 205: 143-150.中国地质大学研究生课程论文课程名称:高等光学教师姓名:王宏学生姓名:张晓辉学生学号:120131397学生专业:物理学所在院系:数理学院类别: B.硕士日期:2014年1月9日评语平时成绩:课程论文成绩:总成绩:评阅人签名:注:1、无评阅人签名成绩无效;2、必须用钢笔或圆珠笔批阅,用铅笔批阅无效;3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

相关主题