当前位置:文档之家› 第二章飞机结构受力分析和抗疲劳设计思想

第二章飞机结构受力分析和抗疲劳设计思想


机翼的特点是薄壁结构,因此以上各元件之间的连接大 多采用分散连接:如铆钉连接、螺栓连接、点焊、胶接 或它们的混合形式——如胶铆等。
桁条
翼肋
缘条
腹板
翼 梁
蒙皮
缘条
表示铆接关系
2.1.5 机翼结构的典型受力形式
• 机翼的典型受力形式有:梁式、单块式、 多腹板式或混合式等薄壁结构,此外还有 一些厚壁结构(如整体壁板式)的机翼。 • 梁式机翼通常有单梁式和双梁式两种。它 们装有一根或两根强有力的翼梁,蒙皮很 薄,桁条的数量不多而且较弱,有些机翼 的桁条还是分段断开的。
• 加强翼肋除具有上述作用外,还要承受和 传递较大的集中载荷。ΔQΔ Nhomakorabeaq扭
Δ
q1
Δ Δ M扭
q2
刚心
• 在开口端部或翼根部位的加强翼肋,其主 要功用是把机翼盒段上由一圈闭合剪流构 成的扭矩,转换成一对垂直力构成的力偶 分别传给翼梁或机身加强框。
普通翼肋和 加强翼肋的 功用是什么?
普通翼肋的功用是:构成并保持机翼的形状 ;把蒙皮和长桁传给它的空气动力载荷传递给 翼梁腹板,而把空气动力形成的扭矩,通过铆 钉以剪流的形式传递给蒙皮;支持蒙皮、长桁 和翼梁腹板,提高它们的稳定性。 加强翼肋除具有上述作用外,还要承受和传 递较大的集中载荷。在开口端部或翼根部位的 加强翼肋,其主要功用是把机翼盒段上由一圈 闭合剪流构成的扭矩,转换成一对垂直力构成 的力偶分别传给翼梁或机身加强框。
梁式、单块式机翼的结构特点
剪 机翼型式



扭 矩
翼梁腹板 梁式机翼
翼梁缘条 蒙皮与翼梁腹板的盒段 翼梁缘条、桁条、蒙皮 组成壁板
单 块 式
翼梁腹板
蒙皮与翼梁腹板的合段
梁式、单块式机翼的受力特点
梁式机翼和单块式机翼在构造和受力上 有什么不同?
答案要点:梁式机翼的蒙皮较薄,桁条较弱且较少。 桁条主要作用是支持蒙皮,承受局部气动力和提 高蒙皮的抗剪能力。由弯矩引起的拉力和压力主 要由翼梁缘条承受。 单块式机翼的蒙皮较厚,桁 条较多且较强。它的横截面面积与梁缘条的横截 面面积相近。上、下翼面的桁条和蒙皮通过受压、 拉承受绝大部分弯矩。
一、蒙皮:蒙皮的直接功用是形成流线型的机翼外表面。
蒙皮受到垂直于其表面的局部气动载荷;
蒙皮还参与机翼的总体受力—— 它和翼梁或翼墙的腹板组合在一起, 当蒙皮较厚时,它常与长桁一起
形成封闭的盒式薄壁梁承受机翼的扭矩
组成壁板,承受机翼弯矩引起的轴力。
二、长桁(也称桁条)
长桁的主要功用是: ☺支持蒙皮,防止在空气动力作 用下产生过大的局部变形,并 与蒙皮一起把空气动力传到翼 肋上去; ☺提高蒙皮的抗剪和抗压稳定性, 使蒙皮能更好地参与承受机翼 的扭矩和弯矩; ☺长桁还能承受由弯矩引起的部 分轴力。
2.1.3 机翼的受力图
• 机翼主要受两种类型的外载荷: • 一种是以空气动力载荷为主,包括机翼结 构质量力的分布载荷; • 另一种是由各连接点传来的集中载荷。这 些外载荷在机身与机翼的连接处,由机身 提供的支反力取得平衡。
空气动力分布载荷
机翼重力 分布载荷
P部件
一、平直机翼各截面的 剪力、弯矩和扭矩图
?
蒙皮 传来的力 桁条 蒙皮 传来的力
翼肋 桁条
桁条 蒙皮 传来的力 蒙皮
翼肋
翼肋 翼肋 传来的力
三、翼肋
• 翼肋是机翼结构的横向受力构件 • 翼肋按其功用可分为普通翼肋和加强翼肋两种。 • 普通翼肋的功用是:构成并保持规定的翼型;把 蒙皮和桁条传给它的局部空气动力传递给翼梁腹 板,而把局部空气动力形成的扭矩,通过铆钉以 剪流的形式传给蒙皮;支持蒙皮、桁条、翼梁腹 板,提高它们的稳定性等。
①如果机翼上只有空气动 力和机翼结构质量力,则 越靠近机翼根部,横载面 上的剪力、弯矩和扭矩越 大。 ②当机翼上同时作用有部 件集中质量力时,上述力 图会在集中质量力作用处 产生突变或转折。
剪力图
弯矩图
扭矩图
试说明作用在平直机翼上的集中载荷对 机翼剪力、弯矩的影响?
使机翼剪力在集中载荷作用截面发生突变; 弯矩发生转折。集中载荷作用截面以内机翼 各截面上的剪力和弯矩减少。
机翼站位数是 指距离机身中心线的 英寸数
气动力分布载荷
2.1.2 机翼的外载荷
• 飞机在飞行中,作用在机翼上的外载荷有:空气 动力、机翼结构质量力、部件及装载质量力,如 图所示。其中,空气动力分布载荷是机翼的主要 外载荷。
机身反作用力
机翼质量力分布载荷
发动机集中 载荷
• 机翼结构质量力是机翼结构重量和它在飞 行中产生的惯性力的总称,即机翼结构重 量和变速运动惯性力。
• 机翼在外部载荷作用下,象一根固定在机 身上的悬臂梁一样,要产生弯曲和扭转变 形,因此,在这些外载荷作用下,机翼各 截面要承受剪力、弯矩和扭矩。
机翼上所受的剪力、弯矩、扭矩
垂直剪力
垂直弯矩 水平弯矩
水平剪力
扭矩
•由于机翼结构沿水平方向尺寸较大,因而水平剪力和水平弯矩对飞机结构受 力影响较小,在受力分析时只分析垂直剪力、扭矩和垂直弯矩。
二、后掠机翼各截面的剪 力、弯矩和扭矩图
剪力图
弯矩图
扭矩图
机翼的扭矩图是如 何做出的?
扭矩图:某横截面承受的 扭矩等于该截面外端机翼 所有外载荷对刚心的力矩 代数和。
2.1.4 机翼结构的典型元件
蒙皮 桁条 翼肋
翼梁缘条
翼梁腹板
纵向元件有翼梁、长桁、墙(腹板) 横向元件有翼肋(普通翼肋和加强翼肋) 以及包在纵、横元件组成的骨架外面的蒙皮
A—A 截面
B—B 截面
D—D 截面 C—C 截面 支柱
四、翼梁
• 翼梁由腹板和缘条(也称凸缘) 组成。缘条横剖面形状多为 “T”型材或角型材。腹板上还 铆接上许多支柱,这些支柱 起连接翼肋和提高腹板受剪 稳定性的作用。缘条和腹板 的横剖面面积,由翼尖向翼 根逐渐增大。 • 翼梁的主要功用是承受机翼 的剪力和部分或全部弯矩 。
• 作用在机身上的外载荷, 通常可以分为对称载荷和 不对称载荷两种。与机身 对称面对称的外载荷,称 为对称载荷,反之称为不 对称载荷。
一、对称载荷
• 与机身对称面对称的载荷称为对称载荷。 飞机平飞和在垂直平面内作曲线飞行时, 由机翼和水平尾翼的固定接头传给机身的 载荷,以及当飞机以三点或两点(两主轮) 接地时,传到机身上的地面撞击力等,都 属于对称载荷。 • 在对称载荷作用下,机身要受到对称面内 的剪切和弯曲作用。一般在机身与机翼联 接点处,机身承受的剪力和弯矩最大。
多腹板式(或为多梁式):
• 这类机翼布置了较多的纵墙(一般多余5个);蒙皮 较厚(可从几mm到十几mm);无长桁;有少肋、多 肋两种。但由于受集中力的需要,每侧机翼上至 少要布置3~5个加强翼肋.
机翼的平面形状
• 分为:直机翼、后掠翼、三角翼、 小展弦比直机翼四种 直机翼主要用于低速飞机上。后掠翼主 要用于高亚音速和超音速飞机上。国外还有 变后掠机翼的飞机,后掠角可在20°~ 70°之间变化,以适应飞机低空低速、高 空高速、低空高速的性能变化要求。三角翼 和小展弦比直机翼用于超音速飞机上不同类 型的平面形状的机翼。
(3)作用在翼肋上的载荷再通过角材 和铆钉传到翼梁腹板和蒙皮上去。
2.2 机身结构的传力分析
• (1)安置空勤组成员、 旅客,装载燃油、各 种系统、设备以及货 物等; • (2)把机翼、尾翼、起 落架及发动机连接在 一起,形成一架完整 的飞机。
机身结构的外载荷
机翼、尾翼、 起落架等部件 的固定接头传 来的集中载荷
• 单块式机翼的受力特点是:弯曲引起的轴 向力由蒙皮、桁条和缘条组成的整体壁板 承受。剪力由翼梁腹板承受。扭矩由蒙皮 与翼梁腹板形成的闭室承受。 • 单块式机翼的优点是:① 通较好地保持翼 型。② 抗弯、扭刚度较大。③ 受力构件 分散。 • 缺点是:①不便于开大舱口。②不便于承 受集中载荷。③接头联接复杂。
试说明作用在平直机翼上的集中载荷对机翼扭矩的影响?
使机翼扭矩在集中载荷作用 截面上发生突变。变化值等于 集中载荷与集中载荷作用点到 机翼刚轴距离的乘积。
机翼某横截面承受的扭矩,等于该横截面外端机翼上所有外力对机翼
刚心轴力矩的代数和。扭矩的符号:使迎角增大为正,反之为负
刚心轴的定义是: 机翼的每个横截 面上,都有一个 特殊的点,当外 力通过这一点时, 不会使横截面转 动,
缘条
腹板 腹板式翼梁 A—A 截面
整体式翼梁 B—B 截面
斜支柱 直支柱 缘条 桁架式翼梁
五、纵墙(包含腹板)
• 纵墙的缘条比梁缘条弱得多,但大多强于 一般长桁,纵墙与机身的连接为铰接。有 些腹板没有缘条,有些腹板的缘条与长桁 一样强。墙和腹板一般都不能承受弯矩, 但可以与蒙皮组成封闭的盒段来承受机翼 的扭矩。后墙则还有封闭机翼内部容积的 作用。
• 梁式机翼的受力特点是:弯曲引起的轴向 力主要由翼梁的缘条承受。剪力由翼梁的 腹板承受。 • 对双梁式机翼的扭矩可由前后梁腹板与上 下蒙皮组成的盒段(合围框)、前梁腹板 与前缘蒙皮组成的盒段承受。 • 梁式机翼的主要受力构件是翼梁,因此, 它具有便于开口、与机身 (或机翼中段) 连 接较简便等优点。
蒙皮
• 单块式机翼 现代飞机多采用单块式机翼。 单块式机翼的构造特点是:蒙皮较厚;桁条 较多而且较强;翼梁的缘条较弱,有时缘 条的横截面积和桁条差不多。
翼肋
桁条
翼梁 副翼
襟翼
• 这种机翼的蒙皮,不仅具有良好的抗剪稳 定性,而且有较好的抗压稳定性,因此, 它不仅能更好地承受机翼的扭矩,而且能 同桁条一起承受机翼的大部分弯矩。由于 这种机翼结构,是由蒙皮、桁条和缘条组 成一个整块构件来承受弯矩所引起的轴向 力,所以叫做单块式机翼。
第二章 飞机结构受力分析和 抗疲劳设计思想
相关主题