生物化学_基因表达的调控
生物化学
物质代 糖复合物 谢 生物分子 糖、脂类、蛋白质、 核苷酸代谢; 核酸、蛋白质、 生物氧化、 酶、维生素 代谢的调节 癌基因与 细胞信号转导 血液生化 抑癌基因 肝胆生化 DNA、RNA、蛋白质 生物合成;基因表达调控; 基因技术 综合篇 遗传信息
1
基因表达的调控
Regulation of Gene Expression
• 但是,乳糖操纵子是一个弱启动子
(TTTACA/TATGTT) ,需要一个正调控机制来促 使转录的启动。
23
分解代谢物基因激活蛋白CAP 的结合位点
CAP-cAMP 结合部位
CAP:catabolite gene activation protein CAP的结合位点在 -60 处。
CAP以同源二聚物的形式与 cAMP 结合,形成 CAP-cAMP复合物结合在 CAP结合位点上。
外环境中葡萄糖的减少可以增加cAMP 合成。
24
CAP-cAMP 复合物
25
CAP 的正调控作用
CAP CAP
lacI
CAP
Plac
lacO
lacZ
lacY RNApol lacA
CAP
CAP
CAP-cAMP复合物
转录产物
cAMP与CAP的二聚物形成复合物后,结合在CAP
结合位点上,促使转录的启动。
操纵子前导区内一段类似于终止子结构的 DNA序列,其作用是减弱操纵子的转录, 实现对转录过程的精确调节。
38
转录衰减子的意义
• 转录衰减子的形成使RNA聚合酶无法对已
经启动的操纵子中的结构基因进行转录,
而终止转录的茎-环结构的形成又依赖于核
糖体在该操纵子中前导序列上进行的翻译。
由此可见,衰减作用充分利用了转录和翻
lacO
27
乳糖操纵子的意义
• 阻遏蛋白的抑制作用和CAP介导的正调控共同
Байду номын сангаас
担负着原核生物体系内糖源的协调利用。
• 乳糖操纵子的协调调控方式保证了葡萄糖是原核
生物体系优先利用的碳源,并只有在葡萄糖完全 耗尽后,原核生物才利用乳糖作为碳源。
• 乳糖操纵子模型诠释了原核生物基因表达的调节
机制,开创了基因表达机制研究的新领域,是生 物学的一个划时代的突破。(1965年Nobel奖)
• 管家基因的表达只与启动序列(或称为启动子) 和RNA聚合酶有关,基本上不受环境因素和其他 因素的影响。管家基因的表达方式称为组成性表 达(constitutive expression)。
6
• 相对于管家基因,另外一些基因极易受到外界环 境因素的影响。
• 在特定的信号刺激下,有些基因表现出开放性或 增强性的表达,而另一些则表现出关闭性或抑制 性的表达。因此它们分别称为诱导表达 (induction expression)和阻遏表达 (repression expression)。这些基因分别称 为可诱导(inducible)基因和可阻遏 (repressible)基因。
36
转录衰减子终止了转录
当色氨酸含量丰富时,有足够的色氨酸用于合 成前导肽。核蛋白体可顺利通过序列1,并继续向 前与序列2结合。核蛋白体与序列1和序列2的结合, 使序列3和序列4形成了3:4茎-环结构。这一结构与 随后的多聚U序列使RNA聚合酶终止了转录。
37
转录衰减子
• 转录衰减子(transcription attenuator):
一、 操纵子模型是原核生物基因表 达的基本模式
• 1960年,法国巴黎巴斯德研究所的 F. Jacob 和 J. L. Monod 发现大肠杆菌在不含乳糖只含葡萄糖的 培养基中不分泌 b-半乳糖苷酶,只有在只含乳糖 的培养基中才能分泌 b -半乳糖苷酶。分析表明这 是由于在不含乳糖的培养基中不产生编码 b-半乳 糖苷酶的mRNA的结果。 • 1961年,他们首次提出了乳糖操纵子概念。由此 贡献,他们分享了1965年度的Noble生理医学奖。
8
三、基因表达具有时空特异性
• 空间特异性(即组织特异性):同一基因 产物在不同的组织器官中的分布是不同的, 某些基因在一种组织中暂不表达或永不表 达,而另外一些基因是相反的情况。 血红蛋白与肌红蛋白 同工酶
9
•时间特异性(即阶段特异性):在细胞的生 长、发育过程中,相应的基因按一定的时间顺 序开启或关闭,决定细胞向特定的方向分化和 发育。
• 1969年,J. R. Beckwith 从大肠杆菌的DNA中分 离出乳糖操纵子,证实了乳糖操纵子的模型。
15
乳糖操纵子(Lac operon)的结构
调控序列 结构基因
lacI
Plac
lacO
lacZ
lacY
lacA
启动子
cAMP-CAP 结合部位
操纵序列
通透酶 半乳糖苷酶 半乳糖苷转乙酰基酶
4
第一节 基因表达调控的基本性质
Basic Conceptions of Gene Expression Regulation
5
一、诱导表达和阻遏表达是基因表达调控的 普通方式
• 有些基因参与生命的全过程,需要在一个生物体 中所有细胞中持续地表达。这样的基因被称为管 家基因(housekeeping gene)。
2
中心法则
转录
Replication 复制 Reverse transcription
翻译
逆转录
3
• 基因组:一个细胞或生物体所携带的一套完整的 单个遗传物质或整套基因。
• 基因表达:遗传信息经过转录和翻译等一系列过 程,合成特定的RNA和蛋白质,进而发挥其特定 的生物功能的全过程。 • 基因的表达是可调控的:生物体通过特定的蛋白 质-DNA以及蛋白质-蛋白质之间的相互作用来控 制基因表达的过程。其目的是满足自身发育的需 求及适应环境的变化。
阻遏蛋白 阻遏基因
16
调控序列
结构基因
lacI
Plac
lacO
lacZ
lacY
lacA
cAMP-CAP 结合部位 阻遏蛋白 阻遏基因
启 动 操纵序列 子
半乳糖苷酶
通透酶 半乳糖苷转乙酰基酶
结构基因 lacZ、lacY、lacA: 分别编码 b-半 乳糖苷酶,通透酶和乙酰基转移酶。这些相连的 基因呈多顺反子转录。 操纵序列(operator,o): 阻遏蛋白的结合位 点。当阻遏蛋白与操纵基因结合时,lac 的转录 将受到阻遏。 阻遏基因 lacI: 编码与操纵序列结合的阻遏蛋 白。 启动子(promoter): 位于 lacI 和 lacO 之间。
真核生物体系的基因表达要比原核生物体系基因表 达复杂的多,其原因在于: 1. 大小不同。大肠杆菌基因组的长度为4 × 10 bp, 约有4000个基因;而哺乳类基因组的长度为~ 9 10 bp,约有3万~3.5万个基因。 2. 编码特性不同。原核基因组的大部分序列都是 编码基因;而哺乳类基因组中只有10%的序列 编码蛋白质、rRNA和tRNA等,其余90%的序 列功能至今尚不清楚。
11
根据调节序列与结构基因的相对位臵关系, 人们将这些调节序列称为顺式作用元件 (cis-acting element),包括启动子 (promoter)、增强子(enhancer)、沉 默子(silencer)等。
有一些蛋白分子可以与靶基因的顺式作用元 件结合,共同实现调节基因表达的目的, 它们被称为反式作用因子(trans-acting factor)。
译的偶联来实现对氨基酸操纵子转录的精
细调节。
39
氨基酸操纵子前导肽的氨基酸序列
苏
苯丙
组
40
三、分解代谢和合成代谢操纵子的 调节机制
操纵子 乳糖操 纵子 色氨酸 操纵子 操纵子调 控的过程 分解代谢 合成代谢 基础 状态 调控方式
由诱导剂开 关闭 放表达 由辅阻遏剂 开放 关闭表达
41
第三节 真核生物基因表达调控
33
色氨酸操纵子 mRNA 前导序列
trpR P O trpL trpE trpD trpC trpB trpA
转录
5'
序列1 AUG UGA 翻译
序列2
序列3
序列4
UUUU
3'
前导mRNA
MKAIFVLKGWWRTS
前导肽
34
前导序列的发夹结构
35
转录中的色氨酸操纵子
当色氨酸的浓度降低时,核蛋白体在合成前导肽 的两个色氨酸部位上出现暂停,占据了序列1。而此 时的转录仍在进行,序列2和序列3形成了稳定的2:3 茎-环结构。RNA聚合酶可以转录5个结构基因。
血红蛋白亚基的合成量(%)
人血红蛋白珠蛋白基因簇的阶段性表达
50 40 30 20 10
a g
a
b
z
6
e
b
12 18 24 30 36
d
g
3 新生儿期(月龄) 6
10
胎儿期(周龄)
四、基因表达受顺式作用元件和反 式作用因子共同调节
• 一个基因是否表达和表达多少与调节序列 (regulatory sequence)密切相关。调节 序列位于被调控的结构基因(structural gene)的上游,具有特定的核苷酸序列。
LacI 阻遏蛋白与 DNA 结合的复合物
20
别乳糖诱导的 lac 操纵子表达
细胞膜 lacI
RNApol Plac
lacO
lacZ
lacY
lacA
半乳糖苷酶
通透酶
别乳糖 诱导剂
乳糖
lacI
Plac
lacO
lacZ
lacY RNApol lacA