当前位置:文档之家› IEEE 80211协议详细介绍

IEEE 80211协议详细介绍

作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率、可用性。这个基于标准的技术使得管理员可以根据环境选择合适的局域网技术来构造自己的网

络,满足他们的商业用户和其他用户的需求。

和其他IEEE 802标准一样,802.11协议主要工作在ISO协议的最低两层上,也就是物理层和数字链路层(见图1)。任何局域网的应用程序、网络操作系统或者像TCP/IP、Novell NetWare都能够在802.11协议上兼容运行,就像他们运行在802.3 Ethernet

上一样。

802.11b的基本结构、特性和服务都在802.11标准中进行了定义,802.11b协议主要在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。

802.11 工作方式

802.11定义了两种类型的设备,一种是无线站,通常是通过一台PC机器加上一块无线网络接口卡构成的,另一个称为无线接入点(Access Point, AP),它的作用是提供无线和有线网络之间的桥接。一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成,桥接软件符合802.1d桥接协议。接入点就像是无线网络的一个无线基站,将多个无线的接入站聚合到有线的网络上。无线的终端可以是802.11PCMCIA 卡、PCI接口、ISA接口的,或者是在非计算机终端上的嵌入式设备(例如802.11手机)。

图1:802.11和ISO模型

802.11定义了两种模式:infrastructure模式和ad hoc模式,在infrastructure 模式中(见图2),无线网络至少有一个和有线网络连接的无线接入点,还包括一系列无线的终端站。这种配置成为一个BSS(Basic Service Set 基本服务集合)。一个扩展服务集合(ESS Extended Service Set)是由两个或者多个BSS构成的一个单一子网。由于很多无线的使用者需要访问有线网络上的设备或服务(文件服务器、打印机、互联网链接),他们都会采用这种Infrastructure模式。

Ad hoc模式(也成为点对点模式pear to pear模式或IBSS Independent Basic

Service Set)

802.11物理层

图2:Infrastructure模式

在802.11最初定义的三个物理层包括了两个扩散频谱技术和一个红外传播规范,无线传输的频道定义在2.4GHz的ISM波段内,这个频段,在各个国际无线管理机构中,例如美国的USA,欧洲的ETSI和日本的MKK都是非注册使用频段。这样,使用802.11的客户端设备就不需要任何无线许可。扩散频谱技术保证了802.11的设备在这个频段上的可用性和可靠的吞吐量,这项技术还可以保证同其他使用同一频段的设备

不互相影响。

最初,802.11无线标准定义的传输速率是1Mbps和2Mbps,可以使用FHSS(frequency hopping spread spectrum)和DSSS(direct sequence spread spectrum)技术,需要指出的是,FHSS和DHSS技术在运行机制上是完全不同的,

所以采用这两种技术的设备没有互操作性。

使用FHSS技术,2.4G频道被划分成75个1MHz的子频道,接受方和发送方协商一个调频的模式,数据则按照这个序列在各个子频道上进行传送,每次在802.11网络上进行的会话都可能采用了一种不同的跳频模式,采用这种跳频方式主要是为了避免

两个发送端同时采用同一个子频段。

FHSS技术采用的方式较为简单,这也限制了它所能获得的最大传输速度不能大于2Mbps,这个限制主要是受FCC规定的子频道的划分不得小于1MHz。这个限制使得FHSS必须在2.4G整个频段内经常性跳频,带来了大量的跳频上的开销。

和FHSS相反的是,直接序列扩频技术将2.4Ghz的频宽划分成14个22MHz的通道(Channel),临近的通道互相重叠,在14个频段内,只有3个频段是互相不覆盖的,数据就是从这14个频段中的一个进行传送而不需要进行频道之间的跳跃。为了弥补特定频段中的噪音开销,一项称为"chipping"的技术被用来解决这个问题。在每个22MHz通道中传输的数据中的数据都被转化成一个带冗余校验的Chips数据,它和真实数据一起进行传输用来提供错误校验和纠错。由于使用了这项技术,大部分传送错误的数据也可以进行纠错而不需要重传,这就增加了网络的吞吐量。

图3:Ad Hoc模式

802.11b的增强物理层

802.11b在无线局域网协议中最大的贡献就在于它在802.11协议的物理层增加了两个新的速度:5.5Mbps和11Mbps。为了实现这个目标,DSSS被选作该标准的唯一的物理层传输技术,这是由于FHSS在不违反FCC原则的基础上无法再提高速度了。这个决定使得802.11b可以和1Mbps和2M的802.11bps DSSS系统互操作,但是无法和1Mbps和2Mbps的FHSS系统一起工作。

最初802.11的DSSS标准使用11位的chipping-Barker序列-来将数据编码并发送,每一个11位的chipping代表一个一位的数字信号1或者0,这个序列被转化成波形(称为一个Symbol),然后在空气中传播。这些Symbol以1MSps(每秒1M的symbols)的速度进行传送,传送的机制称为BPSK(Binary Phase Shifting Keying ),在2Mbps的传送速率中,使用了一种更加复杂的传送方式称为QPSK(Quandrature

Phase Shifting Keying),QPSK中的数据传输率是BPSK的两倍,以此提高了无线传

输的带宽。

在802.11b标准中,一种更先进的编码技术被采用了,在这个编码技术中,抛弃了原有的11位Barker序列技术,而采用了CCK(Complementary Code Keying)技术,它的核心编码中有一个64个8位编码组成的集合,在这个集合中的数据有特殊的数学特性使得他们能够在经过干扰或者由于反射造成的多方接受问题后还能够被正确地互相区分。5.5Mbps使用CCK串来携带4位的数字信息,而11Mbps的速率使用CCK串来携带8位的数字信息。两个速率的传送都利用QPSK作为调制的手段,不过信号的调制速率为1.375MSps。这也是802.11b获得高速的机理。表1中列举了这

些数据。

为了支持在有噪音的环境下能够获得较好的传输速率,802.11b采用了动态速率调节技术,来允许用户在不同的环境下自动使用不同的连接速度来补充环境的不利影响。在理想状态下,用户以11M的全速运行,然而,当用户移出理想的11M速率传送的位置或者距离时,或者潜在地受到了干扰的话,这把速度自动按序降低为5.5Mbps、2Mbps、1Mbps。同样,当用户回到理想环境的话,连接速度也会以反向增加直至11Mbps。速率调节机制是在物理层自动实现而不会对用户和其它上层协议产

生任何影响。

表1:802.11b数据传送速率规范

802.11数字链路层

802.11的数据链路层由两个之层构成,逻辑链路层LLC(Logic Link Control)和媒体控制层MAC(Media Access Control)。802.11使用和802.2完全相同的LLC之层和802协议中的48位MAC地址,这使得无线和有线之间的桥接非常方便。但是

MAC地址只对无线局域网唯一。

802.11的MAC和802.3协议的MAC非常相似,都是在一个共享媒体之上支持多个用户共享资源,由发送者在发送数据前先进行网络的可用性。在802.3协议中,是由一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的协议来完成调节,这个协议解决了在Ethernet上的各个工作站如何在线缆上进行传输的问题,利用它检测和避免当两个或两个以上的网络设备需要进行数据传送时网络上的冲突。在802.11无线局域网协议中,冲突的检测存在一定的问题,这个问题称为"Near/Far"现象,这是由于要检测冲突,设备必须能够一边接受数据信号一边传送数

据信号,而这在无线系统中是无法办到的。

鉴于这个差异,在802.11中对CSMA/CD进行了一些调整,采用了新的协议CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)或者DCF(Distributed Coordination Function)。CSMA/CA利用ACK信号来避免冲突

的发生,也就是说,只有当客户端收到网络上返回的ACK信号后才确认送出的数据已

经正确到达目的。

CSMA/CA协议的工作流程是:一个工作站希望在无线网络中传送数据,如果没有探测到网络中正在传送数据,则附加等待一段时间,再随机选择一个时间片继续探测,如果无线网路中仍旧没有活动的话,就将数据发送出去。接受端的工作站如果受到发送端送出的完整的数据则回发一个ACK数据报,如果这个ACK数据报被接收端收到,则这个数据发送过程完成,如果发送端没有收到ACK数据报,则或者发送的数据没有被完整地收到,或者ACK信号的发送失败,不管是那种现象发生,数据报都在发送端

等待一段时间后被重传。

CSMA/CA通过这种方式来提供无线的共享访问,这种显式的ACK机制在处理无线问题时非常有效。然而不管是对于802.11还是802.3来说,这种方式都增加了额外的负担,所以802.11网络和类似的Ethernet网比较总是在性能上稍逊一筹。

另一个的无线MAC层问题是"hidden node"问题。两个相反的工作站利用一个中心接入点进行连接,这两个工作站都能够"听"到中心接入点的存在,而互相之间则可能由于障碍或者距离原因无法感知到对方的存在。为了解决这个问题,802.11在MAC 层上引入了一个新的Send/Clear to Send(RTS/CTS)选项,当这个选项打开后,一个发送工作站传送一个RTS信号,随后等待访问接入点回送RTS信号,由于所有的网络中的工作站能够"听"到访问接入点发出的信号,所以CTS能够让他们停止传送数据,这样发送端就可以发送数据和接受ACK信号而不会造成数据的冲突,这就间接解决了

"hidden node"问题。由于RTS/CTS需要占用网络资源而增加了额外的网络负担,一般只是在那些大数据报上采用(重传大数据报会耗费较大)。

最后,802.11MAC子层提供了另两个强壮的功能,CRC校验和包分片。在802.11协议中,每一个在无线网络中传输的数据报都被附加上了校验位以保证它在传送的时候没有出现错误,这和Ethernet中通过上层TCP/IP协议来对数据进行校验有所不同。包分片的功能允许大的数据报在传送的时候被分成较小的部分分批传送。这在网络十分拥挤或者存在干扰的情况下(大数据报在这种环境下传送非常容易遭到破坏)是一个非常有用的特性。这项技术大大减少了许多情况下数据报被重传的概率,从而提高了无线网络的整体性能。MAC子层负责将收到的被分片的大数据报进行重新组装,对于上层协

议这个分片的过程是完全透明的。

联合结构、蜂窝结构和漫游

802.11的MAC子层负责解决客户端工作站和访问接入点之间的连接。当一个802.11客户端进入一个或者多个接入点的覆盖范围时,它会根据信号的强弱以及包错误率来自动选择一个接入点来进行连接(这个过程也称为加入一个基本服务集合BSS)。一旦被一个接入点接受,客户端就会将发送接受信号的频道切换为接入点的频段。在随后的时间内,客户端会周期性的轮询所有的频段以探测是否有其它接入点能够提供性能更高的服务。如果它探测到了的话,它就会和新的接入点进行协商,然后将频道切换到

新的接入点的服务频道中。(见图4)

图4:接入点的漫游服务

这种重新协商通常发生在无线工作站移出了它原连接的接入点的服务范围,信号衰减后。其他的情况还发生在建筑物造成的信号的变化或者仅仅由于原有接入点中的拥塞。在拥塞的情况下,这种重新协商实现了"负载平衡"的功能,它将能够使得整个无线

网络的利用率达到最高。

这个动态协商连接的处理方式使得网络管理员可以将无线网络覆盖范围扩大,这是通过在这些地区布置多个覆盖范围重叠的接入点来实现的。IT管理员必须注意的是,802.11 的DSSS频道之间的覆盖必须遵守一定的规范,邻近的相同频道之间不能互相覆盖(见图5),在前面说过802.11的DSSS中一共存在着相互覆盖的14个频道,在这14个频道中,仅有三个频道是完全不覆盖的,利用这些频道来作为多蜂窝覆盖是最合适的。如果两个接入点的覆盖范围互相影响,同时他们使用了互相覆盖的频段,这会造成他们在信号传输时的互相干扰,从而降低了他们各自网络的性能和效率。

图5:无限漫游技术

时间型数据的支持

语音和视频这类和时间相关的数据在802.11的MAC层受到了支持,这是通过一种称为PCF(Point Coordination Function)的功能来实现的。和DCF将所有的控制交给客户端工作站不同,在PCF的工作方式下,接入点全权控制传输媒体。如果一个基本服务集合中PCF被打开,则就由PCF和DCF(CDMA/CA)方式来分享控制时间,当处于PCF模式的时候,接入点将一个接着一个询问客户端以获取数据,还没有被询问到的客户端没有权利发送数据,客户端只有在被询问到的时候才能够重接入点处收取数据。由于PCF处理每个客户端的时间和顺序是固定的,所以一个固定的时延能够保证。PCF的一个不利点就是它的伸缩性不是非常好,在网络规模变大后,由于它轮询的客户端数量变多,造成网络效率的急剧下降。

电源管理

802.11 HR MAC层支持省电模式来延长手持设备的电池使用寿命。这个标准直至两种电源利用模式,分别称为CAM(Continuous Aware Mode)和PSPM(Power Save Polling Mode)。在前面一种模式,信号是始终存在并耗费电源,在后一种模式中,由接入点的特殊信号来调节客户端的设备处于"睡眠"和"唤醒"状态。客户端的设备将周期性地进入"唤醒"状态接受接入点传来的"beacon"信号,这个信号中包含了是否有其他客户端需要和本机进行数据传送活动的信息,如果有,则客户端在接受"beacon"后进入"唤醒"状态接受数据,随后再进入"睡眠"状态。

安全健康

802.11提供了MAC之层(OSI的第二层)的访问控制功能和加密机制,这种加密机制称为WEP(Wired Equivalent Privacy),这就使得无线的网络具有和有线网络相同的安全。对于访问控制来说,ESSID(又称为WLAN服务区域编号)可以在任何接入点中根据自己的要求进行编码,这个编号需要在需要访问的无线客户端设备中进行设置。另外,还在接入点中规定了访问控制列表来限制能够访问接入点的客户,只有具有列在访问控制列表中的MAC地址的客户端才可以访问接入点。

对于数据加密,标准提供的加密方式使用的是RSA数据加密中的40位RC4的PRNG公钥算法。所有在终端和接入点发送和接受的数据都使用密钥进行了加密。另外,当加密使用时,接入点将发布一个加密发起数据报给所有连接范围内的客户端。客户端

必须发回使用正确密钥进行处理的数据报,随后才能获得网络的连接。

除了在第二层工作外,802.11 HR 无线网络还可以支持其他802局域网的安全访问控制标准(例如网络操作系统的注册行为)或加密方式(IPSec和其他应用层的加密)。这些高层的加密技术可以实现包含无线网络和有线网络的端对端安全网络。

IEEE802.11协议详细介绍

协议X档案:IEEE 802.11协议详细介绍 作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps 速率下又增加了 5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。 802.11a 高速WLAN协议,使用5G赫兹频段。 最高速率54Mbps,实际使用速率约为22-26Mbps 与802.11b不兼容,是其最大的缺点。也许会因此而被802.11g淘汰。 802.11b 目前最流行的WLAN协议,使用2.4G赫兹频段。 最高速率11Mbps,实际使用速率根据距离和信号强度可变 (150米内1-2Mbps,50米内可达到11Mbps) 802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。 另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。兼容性促进了竞争和用户接受程度。 802.11e 基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。 也就是说,802.11e是通过无线数据网实现语音通话功能的协议。 该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。 802.11g 802.11g是802.11b在同一频段上的扩展。支持达到54Mbps的最高速率。

80211协议简述

第一课IEEE 802.11协议简述 作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps和11Mbps两个新的网络吞吐速率。利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率、可用性。这个基于标准的技术使得管理员可以根据环境选择合适的局域网技术来构造自己的网络,满足他们的商业用户和其他用户的需求。802.11协议主要工作在ISO协议的最低两层上,并在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。 主要内容: 1.80 2.11工作方式 2.802.11物理层 3.802.11b的增强物理层 4.802.11数字链路层 5.联合结构、蜂窝结构和漫游 1. 80 2.11工作方式 802.11定义了两种类型的设备,一种是无线站,通常是通过一台PC机器加上一块无线网络接口卡构成的,另一个称为无线接入点(Access Point, AP),它的作用是提供无线和有线网络之间的桥接。一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成,桥接软件符合802.1d桥接协议。接入点就像是无线网络的一个无线基站,将多个无线的接入站聚合到有线的网络上。无线的终端可以是802.11PCMCIA卡、PCI接口、ISA接口的,或者是在非计算机终端上的嵌入式设备(例如802.11手机)。 2. 802.11物理层 在802.11最初定义的三个物理层包括了两个扩散频谱技术和一个红外传播规范,无线传输的频道定义在2.4GHz的ISM波段内,这个频段,在各个国际无线管理机构中,例如美国的USA,欧洲的ETSI和日本的MKK都是非注册使用频段。这样,使用802.11的客户端设备就不需要任何无线许可。扩散频谱技术保证了802.11的设备在这个频段上的可用性和可靠的吞吐量,这项技术还可以保证同其他使用同一频段的设备不互相影响。802.11无线标准定义的传输速率是1Mbps和2Mbps,可以使用FHSS(frequency hopping spread spectrum)和DSSS(direct sequence spread spectrum)技术,需要指出的是,FHSS和DHSS技术在运行机制上是完全不同的,所以采用这两种技术的设备没有互操作性。

802协议集

802协议集 802.1 :高层局域网协议Higher Layer LAN Protocols 802.2 :逻辑链路控制Logical Link Control 802.3 :以太网Ethernet (CSMA/CD) 802.4 :令牌总线Token Bus 802.5 :令牌环Token Ring 802.6 :城域网 802.7 :宽带技术 802.8 :光纤技术 802.9 :语音与数据综合局域网 802.11:无线局域网Wireless LAN 802.12 :100VG AnyLAN 802.15:无线个域网 Wireless Personal Area Network (蓝牙) 802.16:宽带无线接入 Broadband Wireless Access (WiMAX) 802.17:弹性分组环 Resilient Packet Ring 802.18:无线管制 Radio Regulatory TAG 802.19:共存 Coexistence TAG 802.20:移动宽带无线接入 Mobile Broadband Wireless Access (MBWA) 802.21:媒质无关切换 Media Independent Handoff ---------------------------------------------------------------------------------------------------------------------------------------------------------------- IEEE802 协议是一种物理协议,因为有以下多种子协议,把这些协议汇集在一起就叫802协议集。IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会不断增加,这些分委员会的职能如下: 一、802.1X协议 802.1X协议是由(美)电气与电子工程师协会提出,刚刚完成标准化的一个符合IEEE802协议集的局域网接入控制协议,全称为基于端口的访问控制协议。能够在利用IEEE 802局域网优势的基础上提供一种对连接到局域网的用户

WLANIEEE80211协议综述

IEEE 802.11 协议综述 [1] IEEE 802.11系列协议标准的发展 IEEE802.11系列协议标准是由国际电气和电子工程师联合会(IEEE)制定 的,它以IEEE802.11标准为基础,包括与无线局域网相关的多个已经发布和正在编著的标准。图1展示了无线局域网在IEEE 网络协议体系中位置。表1给出了每一种标准协议的名称、时间和简单的说明。 图1:无线局域网在IEEE 网络协议体系中位置 表2: IEEE802.11系列协议标准 在表2中需要说明的是,标准的名称都采用小写的字母进行标注,惟有 IEEE802.11F 采用的是大写字母;发布时间为2004年及以后的协议都是还没确定的,因为每一个协议的批准过程都是非常繁杂的,很可能出现延迟的情况。该

综述将在后面选取部分协议标准进行详细的描述。

图3:IEEE 802.11系列协议中协议分布 如图3在IEEE 802.11系列协议标准中各种协议的分布中没有包含IEEE802.11标准。因为IEEE 802.11作为基础协议包含了物理层和MAC子层的内容,后续的速度扩展(比如:IEEE 802.11a、IEEE 802.11b、IEEE 802.11g 和未来的IEEE 802.11n)都延续了它所定义的MAC协议。该综述会对接触到的一些协议进行简单的描述,包括IEEE 802.11、IEEE 802.11a 、IEEE 802.b、IEEE 802.11e、IEEE 802.11g和最新的IEEE 802.11n 。 [2] IEEE 802.11 a,b,g,n 协议的定义和标准 IEEE 802.11 IEEE 802.11是第一代无线局域网标准之一,也是国际电气和电子工程师联合会IEEE发布的第一个无线局域网标准,是其他IEEE802.11系列标准的基础标准。该标准定义了物理层和介质访问控制MAC协议的规范,允许无线局域网及无线设备制造商在一定范围内建立互操作网络设备。常常把IEEE802.11作为无线局域网的代名词。IEEE802.11标准有两个版本:1997年版和后来补充修订的1999年版。 IEEE 802.11无线网络标准规定了3种物理层传输介质工作方式。其中2种物理层传输介质工作方式在2.4~2.4835 GHz微波频段(根据各国当地法规或规定不同,频段的具体定义也有所不同),采用扩频传输技术进行数据传输,包括跳频序列扩频传输技术(FHSS)和直接序列扩频传输技术(DSSS)。另一种方式以光波段作为其物理层,也就是利用红外线光波传输数据流。需要注意的是,虽然红外线同样适用于IEEE 802.11标准,但它是光学技术,并不使用2.4GHz频段。 在IEEE 802.11的规定中,这些物理层传输介质中,FHSS及红外线技术的无线网络则可提供1Mbps传输速率(2Mbps为可选速率),而DSSS则可提供1Mbps 及2Mbps工作速率。多数FHSS厂家仅能提供1Mbps的产品,而符合IEEE 802.11无线网络标准并使用DSSS厂家的产品则全部可以提供2Mbps的速率,因此DSSS 在无线局域网产品中得到了广泛的应用。虽然采用跳频序列扩频技术(FHSS)与采用DSSS的设备都工作在相同的频段中,但是由于它们运行的机制完全不同,所

802.11标准协议代码

竭诚为您提供优质文档/双击可除802.11标准协议代码 篇一:802.11协议 802.11b/g/n协议 一、符合ieee的移动通信技术 二、802.11四种主要物理组件 1.工作站(station) 构建网络的主要目的是为了在工作站间传送数据。所谓工作站,是指配备无线网络接口的计算设备,即支持802.11的终端设备。如安装了无线网卡的pc,支持wlan的手机等。 2.接入点(accesspoint) 802.11网络所使用的帧必须经过转换,方能被传递至其他不同类型的网络。具备无线至有线的桥接功能的设备称为接入点,接入点的功能不仅于此,但桥接最为重要。为sta 提供基于802.11的接入服务,同时将802.11mac帧格式转换为以太网帧,相当于有限设备和无线设备的桥接器。 3.无线媒介(wirelessmedium) 802.11标准以无线媒介在工作站之间传递帧。其定义的物理层不只一种,802.11最初标准化了两种射频物理层

(2.4ghz和5ghz)以及一种红外线物理层。 4.分布式系统(distributionsystem) 当几个接入点串联以覆盖较大区域时,彼此之间必须相互通信以掌握移动式工作站的行踪。 分布式系统属于802.11的逻辑组件,负责将帧传送至目的地,将各个ap连接起来的骨干网络。 三、无线局域网的网络类型 infrastructure网络架构可以实现多终端共用一个ap。需要ap提供接入服务,ap负责基础结构型网络的所有通信。这种网路可以提供丰富的应用,较多的sta接入数量。 ad-hoc网络没有有线基础设施,网络节点由移动主机构成,无线网卡之间的通讯,不需要通过ap。一般是少数几个sta为了特定目的而组成的一种暂时性网络,又称特设网络。 注意: bss(basicserviceset)基本服务集由能互相通信的sta 组成,是802.11网络提供服务的基本单元; ess扩展网络由多个bss构成,是采用相同ssid的多个bss形成的更大规模的虚拟bsss,是为了解决单个bss覆盖范围小的问题而定义的;ssid(服务集标识),标识一个ess 网络,相当于网络的名称;bssid是ap的mac地址,用来标识ap管理的bss。 bss和ess的关系如下图:

IEEE 802 系列协议

IEEE 802 系列协议 IEEE802 协议是一种物理协议,因为有以下多种子协议,把这些协议汇集在一起就叫802协议集。IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会不断增加,这些分委员会的职能如下: 一、802.1X协议 802.1X协议是由(美)电气与电子工程师协会提出,刚刚完成标准化的一个符合IEEE802协议集的局域网接入控制协议,全称为基于端口的访问控制协议。能够在利用IEEE 802局域网优势的基础上提供一种对连接到局域网的用户进行认证和授权的手段,达到了接受合法用户接入,保护网络安全的目的。802.1x认证,又称EAPOE认证,主要用于宽带IP城域网。 802.1--高层及其交互工作。提供高层标准的框架,包括端到端协议、网络互连、网络管理、路由选择、桥接和性能测量。 802.(基于端口的访问控制Port Based Network Access Control) ,协议起源于802.11协议,后者是标准的无线局域网协议,802.1x协议的主要目的是为了解决无线局域网用户的接入认证问题。 802.1x协议仅仅提供了一种用户接入认证的手段,并简单地通过控制接入端口的开/关状态来实现,这种简化适用于无线局域网的接入认证、点对点物理或逻辑端口的接入认证,而在可运营、可管理的宽带IP城域网中作为一种认证方式具有一定的局限性。 IEEE 802.1d (生成树协议Spanning Tree) IEEE 802.1w, RSTP算法 IEEE 802.1s, MSTP算法 IEEE 802.1P,讲述的是交换机与优先级相关的流量处理的协议。 IEEE 802.1q,虚拟局域网Virtual LANs:VLan)虚拟桥接局域网协议,定义了VLAN以及封装技术,包括GARP协议及其源码、GVRP源码。 二、IEEE 802.2 IEEE 802.2 LLC (Logical Link Control,逻辑链路控制),802.2--连接链路控制LLC,提供OSI数据链路层的高子层功能,提供LAN 、MAC子层与高层协议间的一致接口。 三、IEEE 802.3 IEEE 802.3 是一篇非常重要的业界规范文档。其中最主要的就是规定了以太网的电气指标,从物理层的电路结构到链路层的MAC操作都有介绍。802.3--以太网规范,定义CSMA/CD标准的媒体访问控制(MAC)子层和物理层规范。 802.3u (快速以太网Fast Ethernet) 802.3z (千兆以太网Gigabit Ethernet) 四、802.4--令牌总线网 802.4 (令牌环总线Token-Passing Bus (单一/多信道速率1, 5, 10 MBit/s) 802.4--令牌总线网。定义令牌传递总线的媒体访问控制(MAC)子层和物理层规范。 五、802.5--令牌环线网 802.5--令牌环线网,802.5 (令牌环Token-Passing Ring 基带速率1, 4, 16 MBit/s) 定义令牌传递环的媒体访问控制(MAC)子层和物理层规范。 六、802.6--城域网MAN 802.6--城域网MAN,定义城域网(MAN)的媒体访问控制(MAC)子层和物理层规

WLAN标准协议

【WLAN从入门到精通-基础篇】第3期——WLAN标准协议 在WLAN的发展历程中,一度涌现了很多技术和协议,如IrDA、Blue Tooth和HyperLAN2等。但发展至今,在WLAN领域被大规模推广和商用的是IEEE 802.11系列标准协议,WLAN也被定义成基于IEEE 802.11标准协议的无线局域网。我们对802.11已不陌生,在购买支持WLAN功能的产品时都能看到802.11的影子。本期我们讲下802.11主要的具有里程碑意义的标准协议:802.11a、802.11b、802.11g、802.11n和802.11ac。虽然协议比较枯燥乏味,但了解了这些协议,有助于我们部 署WLAN,下面就跟随小编一起看下这几个主要协议吧. WLAN和有线局域网最大的区别就是“无线”,通过上期的学习我们知道WLAN通信媒介是射频,射频和有线局域网的媒介(电缆或光纤)相比具有完全不一样的物理特性,这就导致WLAN的物理层(PHY)和媒介访问控制层(MAC)不同于有线局域网。所以,802.11协议主要定义的就是WLAN的物理层和MAC层。 在20世纪90年代初为了满足人们对WLAN日益增长的需求,IEEE成立了专门的802.11工作组,专门研究和定制WLAN的标准协议,并在1997年6月推出了第一代WLAN协议——IEEE 802.11-1997,协议定义了物理层工作在ISM的2.4G频段,数据传输速率设计为2Mbps。该协议由于在速率和传输距离上的设计不能满足人们的需求,并未被大规模使用。 随后,IEEE在1999年推出了802.11a和802.11b。 802.11a工作在5GHz的ISM频段上,并且选择了正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)技术,能有效降低多路径衰减的影响和提高频谱的利用率,使802.11a的物理层速率可达54Mbps。 802.11b则依然工作在2.4GHz的ISM频段,但在802.11的基础上进行了技术改进,使802.11b的通信速率达到11Mbps。 OFMD是一种多载波调制技术,主要是将指定信道分成若干子信道,在每个子信道上使用一个子载波进行调制,并且各子载波是并行传输,可以有效提高信道的频谱利用率。 虽然802.11b提供的接入速率比802.11a低,但当时5GHz芯片研制过慢,待芯片推出时802.11b已被广泛应用。由 于802.11a不能兼容802.11b,再加上5GHz芯片价格较高和地方规定的限制等原因,使得802.11a没有被广泛采用。 在2000年初,IEEE 802.11g工作组开始开发一项既能提供54Mbps速率,又能向下兼容802.11b的协议标准。并 在2001年11月提出了第一个IEEE 802.11g草案,该草案在2003年正式成为标准。802.11g兼容了802.11b,继续使 用2.4GHz频段。为了达到54Mbps的速率,802.11g借用了802.11a的成果,在2.4GHz频段采用了正交频分复用(OFDM)技术。IEEE 802.11g的推出,满足了当时人们对带宽的需求,对WLAN的发展起到了极大的推动作用。 大家可能会有疑问:为什么不在1999年制定802.11b标准时就直接采用和802.11a相同的OFDM技术,这样就可以更早的 在2.4GHz频段上取得54Mbps的速率了,而不必等到2001年底的802.11g的出现。事实上在1999年讨论802.11b的时 候,OFDM技术确实被提出应用到802.11b标准中,但当时美国联邦通信协会(FCC)禁止在2.4GHz频段使用OFDM,这条禁令直到2001年5月才被撤销,6个月后,采用OFDM技术的802.11g草案才得以顺利出台。 在急速发展的网络世界54Mbps的速率不会永远满用户需求。在2002年一个新的IEEE工作组——IEEE 802.11任务 组N即TGn(Task Group n)成立,开始研究一种更快的WLAN技术,目标是达到100Mbps的速率。该目标的实现一波三折,由于小组内两个阵营对协议标准的争论不休,新的协议直到2009年9月才被敲定并批准,这个协议就是802.11n。在长 达7年的制定过程中,802.11n的速率也从最初设计的100Mbps,完善到了最高可达600Mbps,802.11n采用了双频工作模式,支持2.4GHz和5GHz,且兼容802.11a/b/g。 802.11n标准刚刚尘埃落定后, IEEE就开始了下一代的WLAN标准协议——802.11ac的制定工作。并在2013年正式推出 了802.11ac标准协议,802.11ac工作在5GHz频段,向后兼容802.11n和802.11a,80.211ac沿用了802.11n的诸多技术并做了技术改进,使速率达到1.3Gbps。 通过下表有助于我们了解802.11各协议的主要参数。 华为产品在V200R003C00及之前版本支持802.11n、802.11g、802.11b和802.11a,从V200R005C00版本开始支 持802.11ac,并推出了支持802.11ac的AP:AP5030DN和AP5130DN。 华为产品在V200R003C00版本及之前版,需要使用配置命令配置射频的类型: radio-type ? [6605_v2r3_111-wlan-radio-prof-test] radio-type

IEEE802协议(详细介绍)

IEEE802协议集介绍(802.1~802.21) TCP/IP协议(Transfer Controln Protocol/Internet Protocol)叫做传输控制/网际协议,又叫网络通讯协议,这个协议是Internet国际互联网络的基础。 TCP/IP协议世界上有各种不同类型的计算机,也有不同的操作系统,要想让这些装有不同操作系统的不同类型计算机互相通讯,就必须有统一的标准。TCP/IP协议就是目前被各方面遵从的网际互联工业标准。 TCP/IP是网络中使用的基本的通信协议。虽然从名字上看TCP/IP包括两个协议,传输控制协议(TCP)和网际协议(IP),但TCP/IP实际上是一组协议,它包括上百个各种功能的协议,如:远程登录、文件传输和电子邮件等,而TCP协议和IP协议是保证数据完整传输的两个基本的重要协议。通常说TCP/IP是Internet协议族,而不单单是TCP和IP。 TCP/IP是用于计算机通信的一组协议,我们通常称它为TCP/IP协议族。它是70年代中期美国国防部为其ARPANET广域网开发的网络体系结构和协议标准,以它为基础组建的INTERNET是目前国际上规模最大的计算机网络,正因为INTERNET的广泛使用,使得TCP/IP成了事实上的标准。 之所以说TCP/IP是一个协议族,是因为TCP/IP协议包括TCP、IP、UDP、ICMP、RIP、TELNETFTP、SMTP、ARP、TFTP等许多协议,这些协议一起称为TCP/IP协议。以下我们对协议族中一些常用协议英文名称和用途作一介绍: TCP(Transport Control Protocol)传输控制协议 IP(Internetworking Protocol)网间网协议 UDP(User Datagram Protocol)用户数据报协议 ICMP(Internet Control Message Protocol)互联网控制信息协议 SMTP(Simple Mail Transfer Protocol)简单邮件传输协议 SNMP(Simple Network manage Protocol)简单网络管理协议 FTP(File Transfer Protocol)文件传输协议 ARP(Address Resolation Protocol)地址解析协议 从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层、网间网层、传输层、应用层。其中: 网络接口层这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层。 网间网层负责相邻计算机之间的通信。其功能包括三方面。 一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。 二、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。 三、处理路径、流控、拥塞等问题。 传输层提供应用程序间的通信。其功能包括: 一、格式化信息流; 二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必

802.11协议详情

802.11b/g/n协议 一、符合IEEE的移动通信技术 二、802.11四种主要物理组件 1.工作站(Station) 构建网络的主要目的是为了在工作站间传送数据。所谓工作站,是指配备无线网络接口的计算设备,即支持802.11的终端设备。如安装了无线网卡的PC,支持WLAN的手机等。 2.接入点(Access Point) 802.11网络所使用的帧必须经过转换,方能被传递至其他不同类型的网络。具备无线至有线的桥接功能的设备称为接入点,接入点的功能不仅于此,但桥接最为重要。为STA提供基于802.11的接入服务,同时将802.11mac帧格式转换为以太网帧,相当于有限设备和无线设备的桥接器。 3.无线媒介(Wireless Medium) 802.11标准以无线媒介在工作站之间传递帧。其定义的物理层不只一种,802.11最初标准化了两种射频物理层(2.4GHz和5GHz)以及一种红外线物理层。 4.分布式系统(Distribution System) 当几个接入点串联以覆盖较大区域时,彼此之间必须相互通信以掌握移动式工作站的行踪。

分布式系统属于802.11的逻辑组件,负责将帧传送至目的地,将各个AP连接起来的骨干网络。 三、无线局域网的网络类型 Infrastructure网络架构可以实现多终端共用一个AP。需要AP提供接入服务,AP负责基础结构型网络的所有通信。这种网路可以提供丰富的应用,较多的STA接入数量。 Ad-hoc网络没有有线基础设施,网络节点由移动主机构成,无线网卡之间的通讯,不需要通过AP。一般是少数几个STA为了特定目的而组成的一种暂时性网络,又称特设网络。

802.11协议

众所周知目前在LAN范围内的Wirless无线应用所遵循的标准都以802.11系列为主,从802.11b,g发展到今天的802.11n,相比其他标准而言802.11n的优势是显而易见的,然而目前并不是所有企业都将自己的无线网络升级到了基于802.11n标准的通讯,为什么11n这种优势没有转换为胜势确定自己在无线网络架设上的地位呢?今天我们就从技术角度来分析,看看802.11n协议要想正式走向无线应用的前端还面临着哪些问题。 一,标准未动草案先行: 从11n诞生到现在一直都没有正式的标准诞生,现在市场上各个厂商所推崇的802.11n设备所遵循的不过是修改过的第二版802.11n草案,并不是最终的正式版。因此从某个方面讲市面上所有802.11n产品都是基于Wi-Fi联盟互操作认证的产品和获得独立认证的草案2.0产品。 那么正式版推出后是否兼容之前的版本?草案2.0产品是否可以通过灵活的方式过度或升级到正式版呢?到目前为止权威机构并没有给我们任何确定答案。 正因为目前这种“标准滞后、产品早产”的问题造成大多数企业用户还在观望,即使使用无线网络也会因为担心现阶段购买了11n草案产品造成日后升级困难而转而投向了54M无线设备。所以11n产品的应用处于观望阶段。 不过虽然官方没有任何表态,但是很多厂商为了利润已经开发出这样或那样的基于11n 的无线设备,按照厂商的说法现在的草案标准已经升级为2.0,是改进版本,从标准上看接近最终结果,完全可以兼容以后的正式版,就算正式版有所改动也仅仅是软件方面的,厂商可以通过网上升级或刷新驱动等方式来完成草案到正式版的转变。 然而在正式版出来之前没有人能够针对上述的说法和操作打保票,考试.大提示目前这些802.11n设备是否能够完成过度升级到正式版还难说。不过既然已经发展到了草案2.0而且如此多的厂商都开始发布11n产品,那么这方面的担忧应该可以减少,毕竟厂商自身会在日后提供解决办法的。 二,11n先行其他标准拖后腿: 应用过11n的用户都知道虽然他和基于802.11g的54M产品是相互兼容的,但是当网络内存在两种标准混合通讯时,11n设备会降低速度传输的。说白了就是众多无线客户端以及无线路由器中如果有一台低速度低标准的无线产品接入无线网络,那么所有设备都将按照低速度低标准来运行,就算其他两台11n设备进行通讯所使用的还将与那台低速度低标准的无线产品一致。 不过上述问题可以通过我们在设置11n时指定容许其工作的模式来解决,一般在11n设备的设置界面中可以指定工作模式是单独11n还是与11g或11b的混合。选择单独11n将只容许802.11n高速产品的接入,而11g产品想连接该设备时访问将被拒绝。因此当我们希望多个11n设备可以满速度运转时可以通过设置单模式方法来解决。 另外即使在实际通讯过程中一端产品没有达到11n标准,他们之间的通讯也要比单独使用11g标准效果好得多,在老式的(802.11a/b/c)客户端上使用11n产品也能提供一种可以衡量的性能优势。对于无线局域网上的a/b/c语音电话来说,11n所具备的更大可靠性意味着更高质量的电话和更少的布线死区。 三,客户端可支持11n的设备少: 目前来说不管是企业端应用还是在家庭中建立11n无线网络,对应的11n产品价格也是高高在上的,同时日常使用的诸如PSP,PDA,手机,笔记本内置无线网卡等设备基本上都属于54M 802.11g范畴。所以说在客户端上支持11n的设备比较少。企业内的笔记本电脑大规模升级到11n标准也许还要2、3年的时间,手机和扫描仪也许时间更长。 不过随着11n相关应用的推广以及良好的兼容性,越来越多的用户开始尝试使用相应的产品。同时Intel公司也在致力于推广11n无线应用。迅驰2将是迅驰2003年发布后的第一

IEEE802.11协议详细的介绍

协议X档案:IEEE 802.11协议详细介绍 作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领 域内独领风骚。这些协议包括了802.3 Ethernet 协议、802.5 Token Ring 协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提 出了802.11b"High Rate" 协议,用来对802.11 协议进行补充,802.11b 在802.11 的1Mbps 和 2Mbps速率下又增加了 5.5Mbps和11Mbps 两个新的网络吞吐速率,后来又演进到 802.11g 的54Mbps,直至今日802.11n 的108Mbps。 802.11a 高速WLAN协议,使用5G赫兹频段。 最高速率54Mbps,实际使用速率约为22-26Mbps 与802.11b不兼容,是其最大的缺点。也许会因此而被802.11g淘汰。 802.11b 目前最流行的WLAN协议,使用2.4G赫兹频段。 最高速率11Mbps,实际使用速率根据距离和信号强度可变 (150米内1-2Mbps,50米内可达到11Mbps) 802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。兼容性促进了竞争和用户接受程度。 802.11e 基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。 也就是说,802.11e是通过无线数据网实现语音通话功能的协议。 该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。 802.11g 802.11g是802.11b在同一频段上的扩展。支持达到54Mbps的最高速率。兼容 802.11b。该标准已经战胜了802.11a成为下一步无线数据网的标准。 802.11h 802.11h是802.11a的扩展,目的是兼容其他5G赫兹频段的标准,如欧盟使用的HyperLAN2。 802.11i 802.11i是新的无线数据网安全协议,已经普及的WEP协议中的漏洞,将成为无线数据网络的一个安全隐患。802.11i提出了新的TKIP协议解决该安全问题。

ITUT与IEEE协议规范

ITU-T与IEEE协议规范 ITU-T的中文名称是国际电信联盟远程通信标准化组 (ITU-TforITUTelecommunicationStandardizationSector),它是国际电信联盟管理下的专门制定远程通信相关国际标准的组织。 该机构创建于1993年,前身是国际电报电话咨询委员会(CCITT是法语 ComitéConsultatifInternationalTéléphoniqueetTélégraphique的缩写,英文是InternationalTelegraphandTelephoneConsultativeCommittee),总部设在瑞士日内瓦。 ITU-T的各种建议的分类由一个首字母来代表,称为系列(见下文),每个系列的建议除了分类字母以外还有一个编号,比如说"V.90"。 参见Category:ITU-T建议. 重要的ITU-T的系列和建议有: A-ITU-T各部分工作的组织协调 B-语法规定:定义,符号,分类 C-常规通信统计 D-常规关税原则 E-总体网络操作,电话服务,服务操作和人的要素 E.123国家和国际电话号码规范 E.163国际电话服务号码分配计划 E.164国际公共远程通信号码分配计划 补充2-号码可移动性 F-非电话远程通信服务 G-传输系统和媒体,数字系统和网络 G.711音频压缩(mu-law) G.722音频压缩(宽带) G.722.1音频压缩(宽带,低码率)

G.722.2语音压缩AMR-WB(宽带,低码率) G.723.1语音压缩CELP G.726音频压缩ADPCM G.728语音压缩LD-CELP G.729语音压缩ACELP H-视频音频以及多媒体系统复合方法 H.223低码率多媒体通信复合协议 H.225.0也被称为实时传输协议 H.261视频压缩标准,约1991年 H.262视频压缩标准(和MPEG-2第二部分内容相同),约1994年 H.263视频压缩标准,约1995年 H.263v2(也就是H.263+)视频压缩标准,约1998年 H.264视频压缩标准(和MPEG-4第十部分内容相同),约2003年 H.323基于包传输的多媒体通信系统 附录D-基于H.323系统的实时传真 附录G-文本传输和文本集(TextconversationandTextSET) 附录J-H.323附录F的安全性 附录K-基于HTTP协议服务的H.323传输控制信道 附录M.1-H.323中的信令协议隧道(Qsig) 附录M.2-H.323中的信令协议隧道(Qsig) H.324低码率下的多媒体通信终端 H.332基于H.323拓展的宽松双向视频会议 在高清编码/解码技术产生之前,视频会议数据是基于通用交换格式(CIF)进行编码的。国际电信联盟-电信标准部(ITU-T)制定了视频标准,称为H.261和H.263。H.261标准只定义了QCIF和CIF格式。四分之一CIF(QCIF)格式只被用于最低数据率(64千位/秒及更低)的会议,目前已经很少使用。自从H.263标准发布以来,更多使用“全分辨率”(定义为

802.11b协议的直接序列扩频的DSP实现(精)

802.11b协议的直接序列扩频的DSP实现 摘要:阐述802.11b协议的直接序列扩频的特点及其在不同传输速率下的扩频原理。针对在DSP上如何实现扩频功能、如何针对DSP的架构优化程序,减少硬件开销,提出改进的方法。 关键词:802.11b;直接序列扩频:DSP 1 引言 近年来,计算机无线网络的逐渐成熟和飞速发展使之迅速地渗透和普及到社会的各个领域.并在许多方面改变了人们原有的生活方式和生活观念。IEEE 早在1999年就推出802.11b标准,目前主流的无线网卡均能够支持802.11b标准。 IEEE802.11b协议[11(Higher—Speed Physical Layer Extension in the 2.4 GHz Band)是对802.11协议的修改和补充,其物理层部分在原来的1Mb/s 和2Mb/s传输速率之外,增加了5.5Mb/s和11Mb/s的高速率DSSS的方案。研究表明,DSSS系统比FHSS系统具有更好的误码性能和传输距离.但因QPSK 不具有恒包络特性,需要用线性功率放大器。故适用于高性能系统。 2 802.1lb协议中的直接序列扩频 80211b的DSSS系统在1Mb/s和2Mb/s时采用长度为11的Barker码扩频,1Mb/s采用DBPSK调制,2Mb/s采用DQPSK调制。5.5Mb/s和11Mb/s 则采用了CCK调制,CCK调制即C0mplelTIentary Code Keying(补码键控)调制。 对于一对由二个元素组成的等长度序列,如果它们对于任何给定的分割,一个序列中相同的元素对和另外一个序列中不同的元素对的数量相等,那么这二个序列就是补码序列。补码序列有很强的位置对称性,自相关性强,互相关性很弱,非常适于作为扩频通信中的伪随机序列码。如果补码序列的元素具有相位参数的复数,那么构成的补码序列就是多相补码序列。IEEE802.11b中的CCK调制采用的就是多相补码序列,其定义的码组就是一个包含4种相位0、π/2、π、-π/2的复数码组。也就是说它的元素是{1,-1,j,-j}其中之 一。 IEEE802.11b所采用的CCK码字最早是由Richard van Nee[2]定义的。以一个互补对作为核(kernel),其他互补序列都是由这个核推演出来的。长度为N的二个不同的互补码之间的最小距离为N/2(N=8)个符号。如果N/2个符号最小相位旋转是2π/M,其中M是可能的相位的数量。那么最小欧式距离为 CCK码字在多径信道下的距离也是比较大的,这说明它是一种适合用于多径信道的分组码[3]。

IEEE 80211协议详细介绍

作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。 利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率、可用性。这个基于标准的技术使得管理员可以根据环境选择合适的局域网技术来构造自己的网 络,满足他们的商业用户和其他用户的需求。 和其他IEEE 802标准一样,802.11协议主要工作在ISO协议的最低两层上,也就是物理层和数字链路层(见图1)。任何局域网的应用程序、网络操作系统或者像TCP/IP、Novell NetWare都能够在802.11协议上兼容运行,就像他们运行在802.3 Ethernet 上一样。 802.11b的基本结构、特性和服务都在802.11标准中进行了定义,802.11b协议主要在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。 802.11 工作方式 802.11定义了两种类型的设备,一种是无线站,通常是通过一台PC机器加上一块无线网络接口卡构成的,另一个称为无线接入点(Access Point, AP),它的作用是提供无线和有线网络之间的桥接。一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成,桥接软件符合802.1d桥接协议。接入点就像是无线网络的一个无线基站,将多个无线的接入站聚合到有线的网络上。无线的终端可以是802.11PCMCIA 卡、PCI接口、ISA接口的,或者是在非计算机终端上的嵌入式设备(例如802.11手机)。

第三章 局域网技术与IEEE802系列协议

第三章局域网技术与IEEE802系列协议第三章局域网技术与IEEE802系列协议56第三章局域网技术与IEEE802系列协议3.1IEEE802的系列模型及概述在第二章的2.2.2 节已经介绍了局域网的接口层和802委员会以及802协议的体系结构,通常讨论局域网是以局域网的拓扑开始。 最常见的拓扑是总线型和环型,还有星型拓扑和异构型拓扑,异 构型拓扑一般是前三种类型中任意两种复合而成。 局域网的传输媒质在2.2.1节也有所介绍,总体来说分为有线接 入和无线接入两大类,其中有线接入的媒质包括双绞线、同轴电缆和光纤三种方式。 对于无线接入来说无线介质包括无线电、短波、微波、卫星和光波,无线通信的传输手段主要有数字微波和卫星通信,其中卫星传输也是微波传输的一种,只不过它的一个站点是绕地球轨道运行的卫星,根据卫星的运行轨道又可以分为地球同步卫星和低轨道人造卫星。 近来发展最快的就是无线局域网(Wireless LAN)技术,可以将PC机和其他典型的局域网设备在无线传输情况下实现通信,但是其 目前的缺点是传输的数据速率有限。 3.1.1IEEE802.1协议该协议为网间互连定义,是关于LAN/MAN桥接、LAN体系结构、LAN管理和位于MAC以及LLC层之上的协议层的 基本标准。

现在,这些标准大多与交换机技术有关,包括802.1q(VLAN标准)、、802.1v(VLAN分类)、802.1d(生成树协议)、802.1s(多生成树协议)和802.1p(流量优先权控制)。 目前在网桥设备中,均应有802.1的协议,常用的有802.1d和802.1f等。 图3.1网络拓扑第三章局域网技术与IEEE802系列协议 573.1.2IEEE802.2协议该协议对逻辑链路控制(LLC),高层协议以及MAC子层的接口进行了良好的规范,从而保证了网络信息传递的准确和高效性。 由于现在逻辑链路控制已经成为整个802标准的一部分,因此这 个工作组目前处于“冬眠”状态,没有正在进行的项目。 其PDU(Protocol DataUnit)结构如图3.2所示。 3.1.3IEEE802.3协议的简介该协议是媒体访问控制(MAC)协议,定义了10Mbps、100Mbps、1Gbps,甚至10Gbps的以太网雏形,同时还定义了第五类屏蔽双绞线和光缆是有效的缆线类型。 该协议工作组确定了众多的厂商的设备互操作方式,而不管它们 各自的速率和缆线类型。 而且这种方法定义了CSMA/CD(带冲突检测的载波侦听多路访问)访问技术规范。 IEEE802.3产生了许多扩展标准,如快速以太网的IEEE802.3u, 千兆以太网的IEEE802.3z和IEEE802.3ab,10G以太网的IEEE802.3ae。

相关主题