自由基生物学简史已有1188次阅读2014-6-2407:47|个人分类:自由基简史|系统分类:科普集锦一、从化学到生物学1900年,俄裔学者有机化学教授Gomberg在密歇根大学博士后工作期间,证明了三苯甲基自由基能稳定存在,奠定了自由基化学的基础。
也是人类第一次知道,自由基是可以独立存在的物质形式之一。
但是发现自由基和生物之间也存在关系要等待半个世纪。
20世纪最伟大的科学进展主要是在物理学领域,尤其是量子力学和相对论的提出,称为20世纪科学史的标志。
在20世纪初,伦琴发现的X射线是一个传奇,给随后的物理和化学研究带来重要影响。
X射线是波长介于紫外线和γ射线间的电磁辐射。
X射线是一种波长很短的电磁辐射,其波长约为0.01~10nm之间。
由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。
伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。
1895年11月8日晚,伦琴陷入了深深的沉思。
他以前做过一次放电实验,为了确保实验的精确性,他事先用锡纸和硬纸板把各种实验器材都包裹得严严实实,并且用一个没有安装铝窗的阴极管让阴极射线透出。
可是现在,他却惊奇地发现,对着阴极射线发射的一块涂有氰亚铂酸钡的屏幕(这个屏幕用于另外一个实验)发出了光。
而放电管旁边这叠原本严密封闭的底片,现在也变成了灰黑色—这说明它们已经曝光了!这个一般人很快就会忽略的现象,却引起了伦琴的注意,使他产生了浓厚的兴趣。
他想:底片的变化,恰恰说明放电管放出了一种穿透力极强的新射线,它甚至能够穿透装底片的袋子。
不过目前还不知道它是什么射线,于是取名“X射线”。
随后,伦琴开始了对这种神秘的X射线的更多研究。
他先把一个涂有磷光物质的屏幕放在放电管附近,结果发现屏幕马上发出了亮光。
接着,他尝试着拿一些平时不透光的较轻物质—比如书本、橡皮板和木板—放到放电管和屏幕之间去挡那束看不见的神秘射线,可是谁也不能把它挡住,在屏幕上几乎看不到任何阴影,它甚至能够轻而易举地穿透15毫米厚的铝板!直到他把一块厚厚的金属板放在放电管与屏幕之间,屏幕上才出现了金属板的阴影,看来这种射线还是没有能力穿透太厚的物质。
实验还发现,只有铅板和铂板才能使屏不发光,当阴极管被接通时,放在旁边的照相底片也将被感光,即使用厚厚的黑纸将底片包起来也无济于事。
接下来更为神奇的现象发生了,一天晚上伦琴很晚也没回家,他的妻子来实验室看他,于是他的妻子便成了在照相底片上留下痕迹的第一人,当时伦琴要求他的妻子用手捂住照相底片。
当显影后,夫妻俩在底片上看见了手指骨头和结婚戒指的影像。
伦琴发现X射线后仅仅几个月时间内,它就被应用于医学影像。
1896年1月5日,在柏林物理学会会议上展出了很多X射线的照片,同一天,维也纳《新闻报》也报道了发现X光的消息。
这一伟大的发现立即引起人们的极大关注,并很快传遍全世界。
在几个月的时间里,数百名科学家为此进行调查研究,一年之中就有上千篇关于X射线的论文问世。
1896年2月,苏格兰医生约翰·麦金泰在格拉斯哥皇家医院设立了世界上第一个放射科。
伦琴虽然发现了X射线,但当时的人们——包括他本人在内,都不知道这种射线究竟是什么东西。
直到20世纪初,人们才知道X射线实质上是一种比光波更短的电磁波,它不仅在医学中用途广泛,成为人类战胜许多疾病的有力武器,而且还为今后物理学的重大变革提供了重要的证据。
正因为这些原因,在1901年诺贝尔奖的颁奖仪式上,伦琴为世界上第一个荣获诺贝尔奖物理奖的人。
人们为了纪念伦琴,将X射线命名为伦琴射线。
现在,我们都了解许多射线包括紫外线、X射线α射线和γ射线都可以对生物和人类产生严重伤害,进行非常短时间X射线检查都可以诱发基因突变。
但这样的知识在100多年前,就连最聪明的科学家都一无所知。
很显然,伦琴发现了X射线,但丝毫没有意识到X射线可以对人体产生危害,否则他不可能让其妻子暴露在X射线中。
不仅X射线,甚至此后发现的对人体危害更恶劣的射线,例如γ射线和α射线,科学家发现并研究了许多年才意识到问题的严重。
这里顺便要说一下另两位超牛科学家。
一位是卢瑟福,伟大的物理学家和伟大的物理学导师最著名的发现是证明了原子的中心存在原子核,在进行这一著名实验中,他采用的工具是用α射线,1910年,卢瑟福带领学生用α射线轰击金属片,本来过去人们认为原子是一种质量均匀的颗粒,结果神奇的结果发生了,按照原来的估计,α射线应该随机穿越金属片,但是并不是这样,似乎很少一部分α射线遇到了一些坚硬的核,根据计算这种分布在原子中心部位的核体积很小,但质量很大,于是他根据这个实验提出了原子核的概念。
不过在他的学生回忆这个实验中,有一个细节,因为但是但观察手段需要用肉眼,每个观察者很短时间就无法承受观察对眼睛导致的疲劳感觉,其实他们正是眼睛受到了射线的伤害,也是早起记录到关于射线有害的文献。
居里夫人是伟大的物理学家,她最著名的科学发现是她与丈夫皮埃尔居里共同发现了放射性元素钋,之后又发现了元素镭。
我们知道放射性元素可以自动发射出射线,而且这些射线可以导致机体危害。
2011年,日本核电站爆炸留给我们的最重要记忆就是人们担心放射性元素污染对人体健康的威胁。
但是上个世纪初期,科学家丝毫不知道放射性物质的危害,正是由于居里夫人长期接触放射性物质,1934年7月4日因恶性白血病逝世。
1903年,法国物理化学家Victor Henri发现,酶催化活性主要决定于酶和反应底物之间的结合强度。
他的工作后来被德国生物化学家Leonor Michaelis和加拿大物理学家Maud Menten通过对蔗糖水解成葡萄糖和果糖的酶催化过程进行研究,证明了Victor Henri的发现,1913年,他们提出该酶反应动力的数学模型。
这种酶催化模型在生物化学领域被称为Michaelis–Menten动力学模型。
就是这个德国Michaelis教授,在1931年提出生物体内某些酶催化的氧化还原反应并不是一步完成,应存在中间过程或者存在中间产物,这种中间产物带有不成对电子,显示出自由基的特征,他将中间产物自由基定名为半醌,许多研究证明,他的这种观点是正确的。
也就是说,早在1931年Michaelis教授已经根据自己的研究和研究证据证明生物体内存在自由基,不过这种观点只收到酶学研究领域的注意。
关于生物体内是否存在自由基,或者自由基是否具有重要生物学效应,在很长时间内并没有受到生物医学领域的丝毫重视。
由于早就注意到高压氧和放射线存在毒性,通过对氧和放射线对人和动物的毒性,有人提出,氧中毒和放射毒性存在一个共同的病理基础,那就是自由基的增加导致了机体的氧化损伤。
这正是上个世纪50年代Rebbeca Gershman等根据前人和自己的研究总结出的推论。
这个时代,大多数生物医学领域的学者都不清楚正常情况下人体和动物体内是否存在自由基。
虽然有从事酶学研究的学者提出一种观点提示机体内本来就存在自由基,但一方面没有直接证据,另一方面大家不太容易接受将自由基这种有毒成份作为机体的成份。
这种重要发现没有受到人们的重视。
自由基与衰老的关系是自由基研究领域的重要内容,也是最为系统的一个分支。
1956年,著名衰老学家Harman D教授提出衰老的自由基理论。
他的主要依据之一就是上世纪中叶,Rebbeca Gershman等提出,氧中毒和放射毒性都是自由基增加引起。
另一个依据是寿命和代谢率有关,而代谢率和耗氧量有关,氧气消耗越多,寿命越小。
衰老一直是科学家非常有兴趣的课题,尤其是随着人口老龄化时代的到来,使得科学家对如何控制衰老的兴趣不断增加。
早年有学者把生命定义为抗死亡能力的总和,现在有学者提出,衰老是伴随年龄增加,机体发生的各种改变的积累,年龄增加是线性的,但衰老的速度随着年龄的增加呈现指数增加,也就是说,年龄越大,衰老的速度越快。
目前普遍认为,衰老是由引起细胞损伤和死亡的各种内在和外界因素共同作用的结果。
关于衰老的理论有300多种,衰老的程序性和自由基理论最为公认。
在众多关于衰老的理论中,有的理论是其他理论的一部分,有一些只是描述衰老的现象,如基因突变、蛋白质糖化氧化、激素合成障碍、端粒缩短学说等,几乎所有上述变化都是继于自由基损伤。
自由基理论的前提是认为衰老是一个受到遗传和环境因素共同负责的过程,衰老的许多具体改变,如不利环境因素、疾病和内源性衰老过程等,都是由自由基反应引起的。
通过大量对自由基引起生物大分子氧化损伤的研究,以及各种抗衰老动物实验研究,均显示氧化损伤确实是各类衰老的共同原因。
Harman教授提出自由基衰老理论后不久,1972年,为了说明线粒体损伤在机体衰老过程中的重要性,Harman认为线粒体的能量代谢是自由基产生的最主要来源,自由基产生引起生物大分子的氧化损伤是导致细胞老化并最终导致机体衰老。
这个时期,人们对自由基的基本看法是,自由基是有毒的,是放射线和氧气毒性引起机体损伤的基础,随着损伤的增加,人会逐渐衰老。
自由基虽然是衰老的重要因素,但肯定不是全部因素,无论是否正确,但确定的事实是自由基衰老理论大大推动了自由基生物医学的快速发展,更重要的是,后来的许多发现存在许多和自由基理论完全相违背的证据,并逐渐让科学家认识到自由基是生命过程中十分重要的物质,没有自由基的参与,生命活动根本无法正常完成,这显然是自由基理论开始没有预料到的后果。
随着自由基生物医学研究的发展,人们逐渐把自由基引起衰老的研究逐渐扩展到更多领域,例如各种伴随衰老的疾病,如老年性痴呆、动脉硬化和糖尿病都和自由基损伤存在密切关系。
后来的研究逐渐深入到细胞水平,证明和许多疾病相关的细胞凋亡和坏死都是自由基损伤的结果。
二、抗氧化之争对自由基衰老理论最严重的挑战是关于抗氧化剂的临床研究结果。
人体属于需氧生物,体内存在自由基大多数呈现出氧化性,因此推测使用抗氧化剂如维生素C、A和E等应该能产生预防氧化损伤,甚至提高寿命的作用。
这方面最著名的例子是获得两个诺贝尔奖的美国化学家和社会活动家莱纳斯卡尔鲍林(Linus Carl Pauling)。
鲍林教授是量子化学和分子生物学奠基人,他用量子力学理论对化学键的研究使他获得了1954年诺贝尔化学奖,1962年由于在推动人类和平方面的贡献,他获得诺贝尔和平奖,从而成为惟一一位先后两次获得诺贝尔奖的科学家。
1994年8月19日,美国著名化学家鲍林以93岁高龄在他加利福尼亚州的家中逝世。
鲍林曾被英国《新科学家》周刊评为人类有史以来20位最杰出的科学家之一,与牛顿、居里夫人及爱因斯坦并肩。
爱因斯坦都曾由衷地称赞鲍林是真正的天才。
在美国,有一场围绕维生素C延续了20多年的大论战,至今余波未了。
论战一方的当事人就是鲍林,论战的主要焦点就是他长期他极力主张超大剂量服用维生素C。