当前位置:文档之家› 频谱分析

频谱分析

2.1频谱分析原理时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简单波形外,很难明确提示信号的频率组成和各频率分量大小,而频谱分析能很好的解决此问题。

由于从频域能获得的主要是频率信息,所以本节主要介绍频率(周期)的估计与频谱图的生成。

2.2.1DFT与FFT对于给定的时域信号y,可以通过Fourier变换得到频域信息Y。

Y可按下式计算式中,N为样本容量,Δt = 1/Fs为采样间隔。

采样信号的频谱是一个连续的频谱,不可能计算出所有的点的值,故采用离散Fourier变换(DFT),即式中,Δf = Fs/N。

但上式的计算效率很低,因为有大量的指数(等价于三角函数)运算,故实际中多采用快速Fourier变换(FFT)。

其原理即是将重复的三角函数算计的中间结果保存起来,以减少重复三角函数计算带来的时间浪费。

由于三角函数计算的重复量相当大,故FFT能极大地提高运算效率。

2.2.2 频率、周期的估计对于Y(kΔf),如果当kΔf = 时,Y(kΔf)取最大值,则为频率的估计值,由于采样间隔的误差,也存在误差,其误差最大为Δf / 2。

周期T=1/f。

从原理上可以看出,如果在标准信号中混有噪声,用上述方法仍能够精确地估计出原标准信号的频率和周期,这个将在下一章做出验证2.2.3 频谱图为了直观地表示信号的频率特性,工程上常常将Fourier变换的结果用图形的方式表示,即频谱图。

以频率f为横坐标,|Y(f)|为纵坐标,可以得到幅值谱;以频率f为横坐标,arg Y(f)为纵坐标,可以得到相位谱;以频率f为横坐标,Re Y(f)为纵坐标,可以得到实频谱;以频率f为横坐标,Im Y(f)为纵坐标,可以得到虚频谱。

根据采样定理,只有频率不超过Fs/2的信号才能被正确采集,即Fourier 变换的结果中频率大于Fs/2的部分是不正确的部分,故不在频谱图中显示。

即横坐标f ∈[0, Fs/2]2.5.运行实例与误差分析为了分析软件的性能并比较时域分析与频域分析各自的优势,本章给出了两种分析方法的频率估计的比较,分析软件的在时域和频域的计算精度问题。

2.5.1标准正弦信号的频率估计用信号发生器生成标准正弦信号,然后分别进行时域分析与频域分析,得到的结果如图 4所示。

从图中可以看出,时域分析的结果为f = 400.3702Hz,频域分析的结果为f = 417.959Hz,而标准信号的频率为400Hz,从而对于标准信号时域分析的精度远高于频域分析的精度。

2.5.2 带噪声的正弦信号的频率估计先成生幅值100的标准正弦信号,再将幅值50的白噪声信号与其混迭,对最终得到的信号进行时域分析与频域分析,结果如图 5所示,可以看出,时域分析的结果为f = 158.9498Hz,频域分析的结果为f = 200.391Hz,而标准信号的频率为200Hz,从而对于带噪声的正弦信号频域分析的精度远高于时域分析的精度。

2.5.3 结果分析与结论在时域,频率估计是使用过零检测的方式计算出,从而对于带噪声的信号既容易造成“误判”,也容易造成“漏判”,且噪声信号越明显,“误判”与“漏判”的可能性越大。

但在没有噪声或噪声很小时,时域分析对每个周期长度的检测是没有累积误差的,故随着样本容量的增大,估计的精度大大提高。

在频域,频率估计是通过找出幅值谱峰值点对应的频率求出。

故不会有时域分析的问题。

但频率离散化的误差及栅栏效应却是不可避免地带来误差,仅频率离散化的误差就大于Fs/2。

由实验结果及以上的分析可以得出结论:在作频率估计时,如果信号的噪声很小,采用时域分析的方法较好;如果信号的噪声较大,采用频域分析的方法较好。

3.总结本文给出了基于MATLAB的声音信号频谱分析仪的设计原理与实现方法,在原理部分,从时域和频域两个方面提供了信号分析所需要的算法流程及计算公式,在原理的最后还结合软件工程理论给出了软件的模块划分,这样在基于此设计原理的基础上可以用任何平台任何语言进行软件开发。

在实现方法上,结合软件的界面和具体的代码讲述了整个软件编码实现的原理。

最后结合一个运行实例比较了时域分析与频域分析计算频率的异同之处,并分析了误差的原因。

尽管MATLAB有强大的数学函数库,使得编程时间大大缩短,但MATLAB有它固有的缺陷,如运行速度太慢,因为它是解释型语言,而且运行依赖了MATLAB 软件,无法发布为商用软件,另外在控制用户输入上也比较难以实现。

这些缺陷也导致了用MATLAB所开发的软件有这些缺陷。

3.2谱分析的几种算法信号的频谱分析是研究信号特性的重要手段之一,对于声信号,由于它一般是非平稳随机信号,通常是求其功率谱来进行频谱分析。

功率谱估计(PSD)是用有限长的数据来估计信号的功率谱,它对于认识一个随机信号或其他应用方面来讲都是非常重要的,是数字信号处理的重要研究内容之一。

功率谱估计分为经典谱估计和现代谱估计。

经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有直接法和间接法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR参数模型[12]。

本章将分别介绍经典功率谱估计中的直接法、间接法、改进算法和现代功率谱估计中的基于AR模型的几种相关算法。

3.2.1经典功率谱估计的几种典型算法经典谱估计具有物理概念明确、算法简单的特点,是目前经常使用的谱估计方法。

在经典谱估计中,主要方法有周期图法、间接法,和直接法的改进算法Bartlett法及Welch法。

(1)周期图法周期图法又称直接法,利用该方法得到的随机信号y(n)的功率谱是直接由傅立叶变换得到的。

傅立叶级数是对周期信号求解频域特性,傅立叶变换则是对非周期信号求解其频域信息。

一个周期信号的傅立叶级数的实质是:把所要研究时域的周期波形分解成许多不同频率的正弦波的叠加和。

傅立叶变换可以看作是时间函数在频率域上的表示。

由傅立叶变换给出的频率域包含的信息和原函数时间域内包含的完全相同,不同的仅是信息的表示形式。

由于计算机的离散性,对一个时间连续信号进行分析要在遵守抽样定理的前提下,进行抽样。

同样,对一个时域信号进行分析时,也要在频域呈离散性,离散傅立叶变换应运而生。

综上所述:周期图法是把随机序列y(n)的N个观测数据视为一个能量有限的序列,直接计算y(n)的离散傅立叶变换得Y(k),然后再取其幅值的平方,并除以N,作为序列y(n)真实功率谱的估计。

第二章实验原理2.1 采样频率、位数及采样定理采样频率[2],也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

采样位数可以理解为声卡处理声音的解析度。

这个数值越大,解析度就越高,录制和回放的声音就越真实。

我们首先要知道:电脑中的声音文件是用数字0和1来表示的。

所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。

反之,在播放时则是把数字信号还原成模拟声音信号输出。

采样定理又称奈奎斯特定理[2],在进行模拟/数字信号的转换过程中,当采样频率fs 不小于信号中最高频率fm 的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。

2.2 时域信号的FFT 分析信号的频谱分析就是计算机信号的傅里叶变换[5]。

连续信号与系统的傅里叶分析显然不便于用计算机进行计算,使其应用受到限制。

而FFT 是一种时域和频域均离散化的变换,适合数值运算,成为用计算机分析离散信号和系统的有力工具。

对连续信号和系统,可以通过时域采样,应用DFT 进行近似谱分析。

2.3 IIR 数字滤波器设计原理利用双线性变换设计IIR 滤波器(巴特沃斯数字低通滤波器的设计)[6],首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR 滤波器的系统函数H(z)。

如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp 和Ws 的转换,对ap 和as 指标不作变化。

边界频率的转换关系为 ∩=2/T tan(w/2)。

接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N 和3dB 截止频率 ∩c ;根据阶数N 查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。

之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR 滤波器的系统函数H(z)。

2.4 FIR 数字滤波器设计原理基于窗函数的FIR 数字滤波器的设计方法通常也称之为傅立叶级数法,是用一定宽度窗函数截取无限脉冲响应序列,获得有限长的脉冲响应序列,从而得到FIR 滤波器。

它是在时域进行的,由理想滤波器的频率响应)(ωj d e H 推导出其单位冲激响应h d (n ),再设计一个FIR 数字滤波器的单位冲激响应h (n )去逼近h d (n ),表示)(n h d =π21ωωωππd e e H j j d )(⎰-由此得到的离散滤波器的系统传递函数H d (z ) 为 )(ωj d e H =∑-=-10)(N n j e n h ω,该h d (n ) 为无限长序列,因此H d (z )是物理不可实现的。

为了使系统变为物理可实现的,且使实际的FIR 滤波器频率响应尽可能逼近理想滤波器的频率响应,采用窗函数将无限脉冲响应h d (n )截取一段h(n)来近似表示h d(n),可得:h (n) = h d(n)w(n) ,从而有:式中N 表示窗口长度,这样H(z)就是物理可实现的系统。

并且从线性相位FIR滤波器的充要条件可知,为了获得线性相位FIR 数字滤波器的冲激响应h(n) ,那么序列h(n) 应有τ= (N −1) / 2的延迟。

由于窗函数的选择对结果起着重要的作用,针对不同的信号和不同的处理目的来确定窗函数的选择才能收到良好的效果。

相关主题