当前位置:文档之家› 木塑复合材料综述

木塑复合材料综述

木塑复合材料发展与研究朱东锋(浙江工商大学环境学院,浙江杭州310012)摘要:本文着重阐述了木塑复合材料的发展历史及与研究现状,通过结构特性和影响因素的分析,最后对我国未来发展的趋势,提出了一些针对性的建议。

关键词:木塑复合材料;因素;发展趋势;建议Abstract: This paper focuses on the development history and the status of wood-plastic composite through analysis of the structural characteristics and. Influencing factors, the last of China’s future developments trends, made a number of specific recommendationsKeywords: Wood-plastic composite materials; Factors; Developments trends; Recommendations1 前言1.1 木塑复合材料的背景木塑复合材料(Wood plastic composites,简称WPC)是采用木质纤维或植物纤维填充、增强,经热压复合、熔融挤出等不同加工方式制成的改性热塑性材料。

近年来,木塑复合材料引起了科技界和工业界的极大关注,是当今世界上许多国家逐步研究推广应用的新型材料。

其原因是:现代生活中人们对塑料的依赖性越来越强,从简单的生活器具到昂贵的家用电器,从办公日用品到尖端的科学仪器,无处不昭示着塑料的存在。

然而,人们在享受便利生活、感叹科技发达的同时,又被挥之不去的白色污染所困扰。

为此,目前世界各国都投入人力、物力,开发各种废旧塑料回收利用的技术,致力于降低塑料回收利用的成本和开发其合适的应用领域。

此外,目前全球森林资源日渐枯竭,人们已经认识到森林在保护环境,维持生态平衡中的重要作用,限伐、禁伐森林的法令不断颁布,对于木材的利用提出高的要求。

一方面尽量减少木材的采伐量,推进寻找木材的替代品,另一方面要提高木材的利用率。

传统木材的使用中有25%~30%属于“废料”,如何将这些边角料加以利用,提高木材工业利用效率。

WPC产品恰好为废旧塑料的循环利用提供了良好的出路、它的代木作用又对节省木材资源起到了不容忽视的作用[1]。

工业咨询家认为发展WPC的推动力来自合理利用地球有限资源的要求,减少原始木材用量,保护森林,回收再利用旧木粉和塑料。

由于现在的经济的快速发展主要是以牺牲环境和资源为代价而维持的,随着人们环保意识的加强,要求保护森林资源,减少利用新木材的呼声日趋高涨,因此回收利用低成本的废旧木材和塑料成为可持续发展观首先要解决的难题之一[2]。

在过去,废的旧木材、植物纤维及塑料都只能焚烧处理,产生的二氧化碳对地球有温室效应,而有些塑料的焚烧还会产生二噁英等对人体有害的气体。

在这种情况下,木塑复合材料应运而生,人们也加大了对其的研究和开发力度,并取得了一些实质性的进展,这些都加速了木塑复合材料的产业化大规模应用的步伐[3]。

1.2 木塑复合材料优点木塑复合材料兼有木材和塑料的优点,同时还具备一系列独特的优良特性:l、耐虫蛀、耐老化、耐腐蚀、吸水性小,使用寿命长;2、类似木材的外观,但比木材的尺寸稳定性好,不会产生裂缝、翘曲且无木材疤痕,有类似木材的二次加工性,可切割,粘贴,用钉子或者螺栓连接固定;3、比塑料硬度高,具有热塑性塑料的可加工性,能重复使用和回收在利用,有利于环境的保护;4、可以赋予其不同的性能,例如阻燃性能,使之更加适应实际生活的需要;5、社会经济型好,适合我国可持续发展战略。

随着挤出设备和挤出技术的发展,人们又通过木塑复合微孔发泡技术制得木塑复合微孔发泡材料。

它比不发泡材料具有更高的冲击强度、更高的韧性、更长的疲劳寿命、更好的热稳定性和更低的密度,进一步拓宽了木塑复合材料制品应用的范围[4]。

2 木塑复合材料的历史与现状早在1907年LeoH Bend博士就利用热固性酚醛树酯与木粉复合材料,但由于受科学发展水平和技术条件的限制,其产品也有飞边、毛刺等缺点,因而应用受到限制。

1916年用作变速器的球形柄是该技术的第一个工业产品,但是由于两界面间相容性差,所以这个技术并没有得到推广。

直到15年左右,才有很少量用于低值的吸声制品。

美国建筑工业寻找如一样的替代材料(耐腐蚀、不翘曲、维修方便、外观和木材类似),大大推动了木塑材料的发展[5]。

植物纤维/热塑性塑性成了木塑复合材料的首选替代品,其产品也进入了实际应用阶段,时至今日,北美是目前世界木塑复合材料最大的地区,预测09年市场总量将达1630kt,其需求年均增幅达11%,总产值将达38亿美元。

据Principia咨询公司报告,北美wpc 的需求约占世界总量的85%[6]。

我国木塑复合材料的研发工作肇始于上世纪90年代,比国外木塑复合材料的研发晚了10多年。

自上世纪90年代末期开始,随着美国率先对来自中国的木质包装进行限制,中国木塑材料的研发及其技术转化进入了一个快速发展时期。

至本世纪初,中国木塑产业雏形渐成。

该产品之所以能够在我国得到发展,是因为其具有应运而生的时代背景和得天独厚的发展条件。

木塑复合材料是一类涵盖面广、产品种类多、形态结构多样的基础性材料,木塑复合材料产业的迅速发展最重要原因就是充分体现了源于自然和归于自然的循环使用特征,符合“资源—产品—废弃物—再生利用”的先进理念,能够更加有效地利用资源和保护环境,在它身上充分体现了循环经济、资源利用、健康环保、节约替代等可持续发展经济的先进理念,由于它的多数产品都具有资源综合利用以及由此带来的保护环境的功能,所以近年来逐渐引起了社会的重视。

当前我国政府“循环经济”和“建设节约型社会”理念的提出更是给我国木塑行业的发展增添了强大的推动力量。

3 木塑复合材料结构特性及影响因素木塑复合材料的成型制备是一个受多种因素影响的复杂过程,植物纤维和塑料的表面特性、纤维所含或吸附的化学成分、塑料的理化性能指标、木塑复合途经等都能对木塑复合材料的性能产生影响。

在木塑复合材料加工制造过程中,各种工艺(如温度、压力、螺杆转速、原料配比、原料形态、表面处理等)对木塑复合材料性能有很大的影响[7]。

3.1 木粉成分和塑料成分木塑复合材料是一种新型的环保材料,其主要由木粉和塑料两部分组成,木粉主要来源有废木粉、刨花、锯木,还有其他植物纤维经粉碎处理过的稻秆、花生壳、椰子壳、甘蔗、亚麻、泽麻、黄麻、大麻等。

其中废木可以从倒塌或坏死的树木获得,也可以从传统木材加工过程中回收。

木纤维和植物纤维对成型设备磨损小,尺寸稳定性良好,电绝缘性优,无毐,可反复加工过程中回收。

热塑性塑料基体主要为PE、PP、PS等聚烯烃和聚氯乙烯,包括新料、回收料以及几者的合金材料。

但根据基体相来划分可分为木质基和塑料基,木质基主要利用塑料来改善木材的耐水性、抗腐蚀性、防霉性等,塑料基则是利用木质纤维的高强度、高刚度、较低密度等特性来增强塑料的强度、刚度等性能[8]。

3.2 温度和压力和螺杆转速植物纤维属于一种刚性材料,加入到塑料基体中,会使混合体系的黏度升高,黏度高会造成植物纤维在熔体中易聚结成团。

温度的升高有利于熔融体系的流动,但过高的温度会使植物纤维降解、焦化,导致产品力学性能降低,外观颜色较深。

一般植物纤维在200℃以上时便开始降解、焦化,所以设定温度一般高于塑料基体的熔融温度,而同时低于200℃。

对于常用的挤出工艺来说,木塑熔融体系达到挤出口模时,必须保证一定的压力,没有足够的挤出压力,会造成制品的强度缺陷,也不利于物料在挤出口模时的制品定型。

3.3 植物纤维的填充量及粒径植物纤维的加入量对材料的拉伸强度和弯曲模量影响较大,对冲击强度也有一定的影响。

随着植物纤维用量的增加,材料的弯曲强度增加,冲击强度略有减少,拉伸强度先上升后降低。

随着植物纤维用量的增加,两者界面结合力减弱,颗粒收起的应力集中及产生缺陷的几率加大,材料受到冲击后不能很好地分散外应力。

此外,由于植物纤维填粒在进行加热混合时不容易打散,使其不能在塑料基体中均匀地分散,从而影响材料的性能[9]。

对于纤维粒径对材料性能的影响,目前学术界还存有争议。

有些观点认为,随着粒径的减少,复合材料的冲击强度、弯曲强度和弯曲模量的变化均呈上升趋势。

因为粒径越小,比表面积也就越大,越容易混合塑炼,同时植物纤维与塑料间的接触面积增大,使之与基体的结合力增大,从而改善了材料的力学性能。

但同时存在另一些学者的观点,虽然植物纤维细度越细,均一性越好,但纤维长度和长径比会大大下降。

而木材的强度主要取决于纤维素,并与纤维素的取向度有关,纤维的取向度越高,强度越好,刚性越强。

在木塑材料中,考虑到纤维的长度及取向时,Kelly提出纤维有一个临界长度Lc,小于Lc应力则无法传递到纤维上,纤维起不到增强的作用[10]。

塑木技术中所应用的木粉一般无大的严格要求,各类木材的木粉和各种植物纤维等一般都可使用(木材加工过程中产生的锯末,下脚料粉碎后皆可),对加工的影响并不大,主要要求各种木粉的粒径一般在20~100目,在此基础上,要保证木粉和塑料在混合前进行烘干处理。

一般木粉含水量应控制在3%以内。

烘干设备可采用电加热,也可用微波加热烘干或自然干燥。

烘干后的木粉应存放在于燥的地方(室内),不可二次吸潮,否则会对加工影响较大。

需要一提的是,在用带排气功能的挤出机,特别是双螺杆挤出机加工塑木材料时,可以不对木粉进行特别的烘干处理,只需日光下自然干燥即可直接进行挤出加工。

3.4 木塑材料添加剂由于木粉具有较强的吸水性,且极性很强,而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小,常需使用适当的添加剂来改性聚合物和木粉的表面,以提高木粉与树脂之间的界面亲和能力。

而且,高填充量木粉在熔融的热塑性塑料中分散效果差,常以某种聚集状态的形式存在,使得熔体流动性差,挤出成型加工困难,需加入表面处理剂来改善流动性以利于挤出成型。

同时,塑料基体也需要加入各种助剂来改善其加工性能及其成品的使用性能,提高木粉和聚合物之间的结合力和复合材料的机械性能。

常用的添加剂包括如下几类:3.4.1 偶联剂能使塑料与木粉表面之间产生强的界面结合;同时能降低木粉的吸水性,提高木粉与塑料的相容性及分散性,所以复合材料的力学性能明显提高。

常用的偶联剂主要有:异氰酸盐、过氧化异丙苯、铝酸酯、酞酸酯类、硅烷偶联剂、马来酸酐改性聚丙剂(MAN-g-PP)、乙烯-丙烯酸酯(EAA)。

一般偶联剂的添加量为木粉添加量的1wt%~8wt%,如硅烷偶联剂可以提高塑料与木粉的粘结力,改善木粉的分散性,减少吸水性,而用碱性处理木粉只能改善木粉的分散性,不能改善木粉的吸水性及其与塑料的粘结性。

相关主题