当前位置:文档之家› ANSYS热应力分析实例

ANSYS热应力分析实例

热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。

管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。

管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。

求温度及应力分布。

7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。

2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。

7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。

2、设定导热系数:选择“Main Menu>Preprocessor>Mate rial Porps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。

7.3.2.3创建模型1、创建八个关键点,选择“Main Menu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:3、设定单元尺寸,并划分网格:“Main Menu>Preprocessor>Meshtool”,设定global size为0.125,选择AREA,Mapped,Mesh,点击Pick all。

7.3.2.4施加荷载1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK,选择管内壁节点;2、在管内壁节点上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数1,流体环境温度450。

3、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入6,12,点击Apply;4、选择“Utili ty Menu>Select>Entities>Nodes>By location>Y coordinates,Reselect”,输入0.25,1,点击Apply;5、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入12,点击OK;6、在管外边界上施加对流边界条件:选择“MainMenu>Solution>Apply>Convection>On nodes”,点击Pick,all,输入对流换热系数0.25,流体环境温度70。

7.3.2.5求解1、选择“Utility Menu>Select>Select Everything”。

2、选择“Main Menu>Solution>Solve Current LS”。

7.3.2.6后处理1、显示温度分布:选择“Main Menu>General Postproc>Plot Result>Nodal Solution>Temperature”。

7.3.2.7重新进入前处理,改变单元,定义结构材料1、选择“Main Menu>Preprocessor>Element Type>Switch Elem Type”,选择Thermal to Structure。

2、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,点击Option,将结构单元设置为轴对称。

3、选择“Main Menu>Preprocessor>Material Porps>Material Models”,输入材料的EX为28E6,PRXY为0.3,ALPX为0.9E-5。

7.3.2.8定义对称边界条件1、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,From Full”,输入0,点击Apply;2、选择“Utility Menu>Select>Entities>Nodes>By location>Y coordinates,Also select”,输入1,点击Apply;3、选择“Main Menu>Solution>Apply>Displacement>Symmetry B.C. On Nodes”,点击Pick All,选择Y axis,点击OK;7.3.2.8施加管内壁压力1、选择“Utility Menu>Select>Entities>Nodes>By location>X coordinates,From Full”,输入5,点击OK;2、选择“Main Menu>Solution>Apply>Pressure>On nodes”,点击Pick All,输入1000。

7.3.2.9设置参考温度1、选择“Utility Menu>Select>Select Everything”。

2、选择“Mai n Menu>Solution>-Loads-Setting>Reference Temp”输入70。

7.3.2.10读入热分析结果1、选择“Main Menu>Solution>Apply>Temperature>From Thermal Analysis>”,选择PIPE_FIN.rth。

7.3.2.11求解选择“Main Menu>Solution>Solve Current LS”。

7.3.2.12后处理选择“Main Menu>General Postpro>Plot Result>NodalSolution>Stress>Von Mises”。

显示等效应力。

7.3.3等效的命令流方法/filename,pipe_fin/TITLE,Thermal-Stress Analysis of a cooling fin/prep7!进入前处理et,1,plane55!定义热单元keyopt,1,3,1!定义轴对称mp,kxx,1,1.25!定义导热系数k,1,5!建模k,2,6k,3,12k,4,12,0.25k,5,6,0.25k,6,6,1k,7,5,1k,8,5,0.25a,1,2,5,8a,2,3,4,5a,8,5,6,7esize,0.125!定义网格尺寸amesh,all!划分网格eplotfinish/solu!热分析求解nsel,s,loc,x,5!选择内表面节点sf,all,conv,1,450!施加对流边界条件nsel,s,loc,x,6,12!选择外表面节点nsel,r,loc,y,0.25,1nsel,a,loc,x,12sf,all,conv,0.25,70!施加对流边界条件nsel,all/pse,conv,hcoef,1nplotsolve!求解生成PIPE_FIN.rth文件finish/post1plnsol,temp!得到温度场分布finish/prep7 !重新进入前处理etchg,tts!将热单元转换为结构单元plane42keyopt,1,3,1!定义轴对称特性mp,ex,1,28e6!定义弹性模量mp,nuxy,1,0.3!定义泊松比mp,alpx,1,0.9e-5!定义热膨胀系数finish/solu!进入结构分析求解nsel,s,loc,y,0!选择对称边界nsel,a,loc,y,1dsym,symm,y!定义对称条件nsel,s,loc,x,5!选择内表面sf,all,pres,1000!施加压力边界条件nsel,all/pbc,all,1/psf,pres,,1nplottref,70!设定参考温度ldread,temp,,,,,,rth!读入PIPE_FIN.rth节点温度/pbc,all,0/psf,pres,,0分布/pbf,temp,,1eplotsolve!求解finish/post1,plnsol,s,eqv!得到等效应力finish7.4直接法热应力分析实例7.4.1问题描述两个同心圆管之间有一个小间隙,内管中突然流入一种热流体,求经过3分钟后外管表面的温度。

已知条件:管材弹性模量:2E11N/m2热膨胀系数:5E-41/ oF泊松比:0.3导热系数:10W/m.oC密度:7880Kg/m3比热:500J/Kg.oC外管外半径:0.131 m外管内半径:0.121 m内管外半径:0.12m内管内半径:0.11m流体温度:300oC流体与内管内壁对流系数:300W/m2.oC内、外管接触热导:0.1W/oC7.4.2命令流方法/filename,contact_thermal/title,contact_thermal example/prep7et,1,13,4,,1! 选择直接耦合单元PLANE13,单元自由度为ux,uy,temp! 定义为轴对称et,2,48! 定义结构接触单元keyopt,2,1,1! 设定接触单元的相应选项keyopt,2,2,1keyopt,2,7,1r,2,2e11,0,0.0001,,,0.1! 定义接触单元实常数mp,ex,1,2e11! 定义管材结构及热属性mp,alpx,1,5e-5mp,kxx,1,10mp,dens,1,7880mp,c,1,500rect,0.11,0.12,0,0.02! 建模rect,0.121,0.131,0,0.02amesh,allnsel,s,loc,x,0.11! 将内管内壁的X方向位移及温度耦合cp,1,ux,allcp,2,temp,allnsel,s,loc,x,0.12! 将内管外壁的X方向位移及温度耦合cp,3,ux,allcp,4,temp,allnsel,s.loc,x,0.121! 将外管内壁的X方向位移及温度耦合cp,5,ux,allcp,6,temp,allnsel,s,loc,x,0.131! 将外管外壁的X方向位移及温度耦合cp,7,ux,allcp,8,temp,allnsel,s,loc,y,0.02! 将内管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0,0.12cp,9,uy,allnsel,s,loc,y,0.02! 将外管顶部节点的Y方向位移及温度耦合nsel,r,loc,x,0.121,0.131cp,10,uy,allnsel,s,loc,x,0.12! 创建接触单元cm,cont,nodensel,s,loc,x,0.121cm,targ,nodetype,2real,2gcgen,cont,targ,3/soluantype,trans! 瞬态分析tunif,20! 初始平均温度tref,20! 参考温度sfl,4,conv,300,,300! 内管内壁对流边界sfl,6,conv,10,,20! 外管外壁对流边界nsel,s,loc,y,0! 约束所有底边单元的Y向位移d,all,uy,0time,180! 载荷步时间deltime,10,5,15! 定义时间步长outres,all,allkbc,1autots,on! 自动时间步长allselsolve! 求解/post1plnsol,temp! 显示温度分布plnsol,s,eqv! 显示等效应力。

相关主题