当前位置:文档之家› 电工电子技术第三章

电工电子技术第三章

第3章 磁路与变压器
3.1 磁路的基本知识 3.2 交流铁心线圈电路 3.3 单相变压器 3.4特殊变压器
3.1 磁路的基本知识
电流产生磁场,磁场变化或运动又产生感应电动势。在大 多数情况下,电气设备的磁场都是由电流来产生的,并且利用 铁磁性材料将磁场集中在一定的范围内,形成磁路。
3.1.1 磁场的基本物理量
磁性材料,如铁、钴、镍及其合金,它们的导磁能力很强, 它们的磁导率可以是真空磁导率μ0的数百、数千乃至数万倍, 而且不是一个常数。 各种材料的磁导率通常用真空磁导率μ0的倍数表示,称为相对 磁导率μr,即
r 0
4. 磁场强度H 同一通电线圈内的磁场强弱(用磁感应强度B来表征),
不仅与所同电流的大小有关,而且与线圈内磁场介质的导磁性 能有关。
U≈E=4.44ƒNΦm=4.44ƒNBmS
对于交流铁心线圈来讲,当电压、频率、线圈匝数一定 时,Φm基本保持不变,即交流铁心线圈具有恒磁通特性。
3.2.3 功率损耗
与直流线圈不同,交流铁心线圈的功率损耗除了有铜损,还 有由于铁心的交变磁化作用产生的铁损。 所以,交流铁心线圈 功率损耗为:
P = UIcosφ=RI2+ΔPFe
铜损是由于铁心线圈有电阻R,电流通过时产生的热损耗。 铁损是由磁滞损耗和涡流损耗两部分组成,是线圈通以交 流电时线圈交变磁化时的铁心损耗。
3.3 单相变压器
3.3.1 变压器的基本结构
1. 变压器的用途和种类
变压器是一种常见的电气设备,其主要功能是将某一电 压值的交流电能,转换为同频率的另一电压值的交流电能。
软磁材料
硬磁材料
矩磁性材料
3.2 交流铁心线圈电路
直流铁心线圈的励磁电流是直流电流,铁心中产生的磁通 是恒定的,在线圈和铁心中不会产生感应电动势,其损耗仅仅 是电流通过线圈作功的热损耗。交流铁心线圈的励磁电流是交 流电流,铁心中产生的磁通是交变的,在线圈和铁心中会产生 感应电动势,存在着电磁关系、电压和电流关系以及功率损耗 等问题。
3.2.1 电磁关系
上图是交流铁心线圈的电路图。由于主磁通Φ是流经铁心 的,铁心的磁导率μ是随磁场强度H而变化的,所以铁心线圈 的励磁电流i和主磁通Φ不呈线性关系;而漏磁通Φσ不流经铁 心,其漏磁电感Lσ可近似是个定值,所以励磁电流i和漏磁通 Φσ呈线性关系。
3.2.2 电压电流关系
交流铁心线圈电路中的电压电流关系较为复杂,经过电磁 感应定律和基尔霍夫定律推导以及分析,可得出以下关系式
变压器的种类很多,常用的有:输配电用的电力变压器; 电解用的整流变压器;实验用的调压变压器;电子线路中的输 入、输出变压器等。虽然变压器种类很多,结构上也各有特点, 但它们的基本结构和工作原理是类似的。
2. 变压器的基本构造 变压器主要由铁心和线圈(也叫绕组)两部分组成。 铁心是变压器的磁路通道。为了减小涡流和磁滞损耗,
磁场的特性可用下列几个基本物理量来表示。
1.磁感应强度B
磁感应强度B是描述空间某点磁场的强弱和方向的物理量, 它是一个矢量。它的大小可用该点磁场作用于1m长,通有1A电 流的导体上的作用力F来衡量( B F )。磁感应强度B的方向可 根据产生磁场的电流方向,用右手Il螺旋定则来确定。B的单位为 特斯拉(T)。
铁心是用磁导率较高而且相互绝缘的硅钢片叠装而成的。
变压器的铁心结构
3.3.2 单相变压器的工作原理
在变压器原线圈中产生自感电动势的同时,在副线圈中 也产生了互感电动势。这时,如果在副线圈上接上负载,那 么电能将通过负载转换成其他形式的能。
1. 变压器的空载运行
变压器的原绕组加额定电压,副绕组开路(不接负载) 的情况,称为空载运行。
磁路的形成
当线圈中通过电流时,大部分磁通沿铁心、衔铁和工作气 隙构成回路,这部分磁通称为主磁通。还有一小部分磁通,它 们没有经过铁心、衔铁和工作气隙形成构成的回路,而是经空 气自成回路,这部分磁通称为漏磁通。
通过实验发现,励磁电流I越大,通电线圈产生的磁场就 越强;线圈的匝数N越多,通电线圈产生的磁场也越强。把励 磁线圈匝数N和励磁电流I的乘积称为磁通势F 。
2.磁通Ф 磁通Ф是描述磁场在某一范围内分布情况的物理量。穿过某
一截面积S的磁力线的总数就是通过该截面积的磁通Φ。垂直 穿过单位面积的磁力线数就反映此处的磁感应强度B的大小。 所以磁感应强度B又称为磁通密度。
B S
或 Φ=BS
式中 ,磁通Φ的单位是韦伯(Wb),面积S的单位为米2(m2)。
3. 磁导率μ
1. 铁磁性材料的磁性能 铁磁性材料是指铁、钴、镍及其合金。它们具有下列磁性能。
(1)高导磁性
(2)磁饱和性
通过实验可测出铁磁材料的磁感应强度B随外加磁场的 磁场强度H变化的曲线(B~H磁化曲线),如下图所示。
磁感应强度B的变化滞后于磁场强度H的变化,这种现 象称为磁滞现象。
2. 铁磁性材料的种类及用途
F NI
当磁通势F一定时,磁通Φ与μ、S成正比,而与l成反比。 它们之间的运算关系是:
F S
l
F l
F Rm
S
其中,Rm称为磁阻,是表示物质对磁通具有阻碍作用的物 理量,其大小与磁路中磁性材料的材质及几何尺寸有关。 上式称为磁路欧姆定律。
ห้องสมุดไป่ตู้表列出磁路与电路对应的物理量及其关系式。
3.1.3 铁磁性材料的磁性质
在通电线圈中,H这个单位只与电流的大小有关,而与线圈 中被磁化的物质,即与物质的磁导率μ无关。但通电线圈中的磁 感应强度B的大小却与线圈中被磁化的物质的磁导率μ有关。H 的大小由B与μ的比值决定,即磁场强度为
B
H
3.1.2 磁路和磁路的基本定律
由于铁心的磁导率比周围空气或其他非铁磁材料的磁 导率大很多倍,所以磁力线几乎全部都从铁心中通过而形 成一闭合的路径.这种约束在铁心所限定的范围内的磁通 路径,称为磁路。
磁导率又称为导磁系数,是用来衡量物质导磁能力的物 理量,用来表示磁场中介质导性能的强弱,其单位是亨利/ 米(H/m)。
就导磁能力来说,大体可分为磁性材料和非磁性材料两大 类。非磁性材料,如铜、铝、空气等,它们的导磁能力很差, 磁导率接近于真空的磁导率μ0(μ0 =4л×10-7H/m),且为一常 数。
相关主题