当前位置:文档之家› 常用铸造方法

常用铸造方法


液态合金中金 属密度大,而非金 属杂质、气体等密 度小,易于上浮。 铸件上表面易于产 生砂眼、气孔、夹 渣等缺陷。
图2.2.3 锥齿轮铸件的浇注位置
b.铸件大平面应朝下
图2.2.4 夹砂示意图
c.铸件的薄壁 应朝下,厚 壁应朝上
图2.2.5 大平面浇注位置 图2.2.6 壳体铸件浇注位置
②分型面的选择
零件图
铸型砂
造型 熔炼金属
浇注
铸型装配图
制造芯盒
合型
铸造工艺卡
造芯 制备芯砂
落砂
清理
检验 去应力退火 入库
2.铸件的生产
某工厂铸造车间生产端盖铸件, 材质为HT150,生产100件,采用砂
(1)铸件工艺设计
型铸造。零件图如下图所示 :
1)砂型的选择
2)造型方法的选择
4.生产报告
1.砂型铸造工艺简介
下面以连接盘零件为例,介绍一下砂型铸造的主 要工艺过程。
零件砂型铸造的主要工艺过程
生产铸件
首先技术人员根据零件的使用性能要求,设计零件的结 构,绘制零件图;然后铸造技术人员根据铸件的零件图、技 术要求、生产批量等进行工艺设计;而后投入生产。
一个铸件的生产过程大致如下:
3)浇注位置与分型面的选择
4)确定工艺参数
5)绘制铸造工艺图
(2)铸件的生产
1)模样和芯盒 2)造型材料 3)造型 4)浇注
5)落砂与清理
图2.2.1 端盖零件图
1)砂型的选择
砂型的选择应根据零件结构、质量要求、 生产批量和车间生产条件等加以选择。 表2.2.1列出了常用砂型的特点和适用范围。
端盖铸件形状简单。生产批量小,所用 材料灰铸铁具有良好的铸造性能。因此,从 表2.2.1可知,可以使用湿砂型。
表2.2.7 砂型铸造时模样外表面的起模斜度(摘自GB/T5105—91)
起模斜度≤
测量面高度 H/mm
金属模样、塑料模样
木模样
≤10 >10~40 >40~100 >100~160 >160~250 >250~400 >400~630 >630~1000
α
2º20′ 1º10′ 0º30′ 0º25′ 0º20′ 0º20′ 0º20′ 0º15′
0.4 0.7 0.9 1.3 1.4 2.5 3.5 5 7 10
0.5 0.8 1.1 1.5 2.2 3 4 6 9 12
0.6 0.9 1.2 1.8 2.5 3.5 5 7 10 14
注:①最终机械加工后铸件的最大轮廓尺寸。②等级A和B仅用于特殊场 合。
表2.2.5 毛坯铸件典型的机械加工余量等级
端盖铸件属于单 件,小批量生产,选 用手工造型比较合理。 端盖铸件最大截面在 一端,且为平面,由 表2.2.2可知,适合用 整模造型。
图2.2.2 模板
3)浇注位置与分型面的选择
浇注位置是浇注时铸件在铸型内所处的位置。 分型面是铸型砂箱间的结合面。
①浇注位置的选择 通常遵循以下原则:
a.铸件的重要加工面或主要工作面应处于底面或侧面
设备投资较少;铸件精度高、表面光滑;落砂方 便,旧砂处理简便;能耗和环境污染较小。但生 产效率较低,形状复杂覆膜较困难。适用于单件、 小批量生产形状不大复杂的铸件
气冲造型
气冲造型和负压造型是近年来发展很快的造型方 法。
气冲造型:
用蒸气或压 缩空气或爆炸产 生的气体瞬间膨 胀,所产生的压 力波紧实型砂的 造型方法。
表2.2.6 砂型铸造时铸件线收缩率
合金种类
铸件线收缩率/%
自由收缩
受阻收缩
中小件
1.0
0.9
普通灰铸铁
大中件
0.9
0.8
特大件
0.8
0.7
孕育铸铁
1.0~1.5
0.8~1.0
碳素铸钢
1.6~2.0
1.3~1.7
铝硅合金
1.0~1.2
0.8~1.0
锡青铜
1.4
1.2
端盖是小型普通灰铸铁件,且结构简单,查表得线收缩率为1%。
c.应尽量减少型芯活块的数量。
d.主要型芯应尽量放在下半铸型中。
端盖浇注位置和分型面的选择:




方案一
方案二
图2.2.10 端盖分型面选择
4)确定工艺参数
为了绘制铸造工艺图,在铸造方案确定后, 还需要选定如下工艺参数。
① 机械加工余量 ② 收缩率 ③ 铸造圆角 ④ 起模斜度 ⑤ 最小铸出孔、槽尺寸 ⑥ 型芯头
表2.2.2 常用手工造型方法的特点和应用范围
造型方法
特点
应用范围
整模造型
整体模,分型面为平面,铸型简单,铸件不会 铸件最大截面在一端,且为平
产生错型缺陷

分模造型 挖砂造型 假箱造型 活块造型 刮板造型 三箱造型 (也可两箱)
地坑造型
模样沿最大截面分为两半,型腔位于上、下两 最大截面在中部,一般为对称
造型是砂型铸造的重要工序,造型方法 有手工造型和机器造型两类。
① 手工造型 指紧砂与起模是由人来完成的。
常用于单件和小批量生产。 常用手工造型方法的 特点和应用范围见表2.2.2。
② 机器造型 指用机器全部完成或至少完成紧砂
和起模操作的造型工序。 适用于中、小型铸件的成批、大量生产。常用的
机器造型方法的主要特点和适用范围见表2.2.3。
经过烘干的高粘土含量 ( 粘 土 质 量 分 数 为 12% ~ 14%)的砂型
铸型强度和透气性较高,发 单件,小批量生
气量小,故铸造缺陷较少; 但生产周期长,设备投资大, 能耗较高,且难于实现机械
产质量要求较高, 结构复杂的中、
化与自动化
大型铸件
表面烘干 型
浇注前用适当方法将型腔 表层(厚15~20mm)进行 干燥的砂型
表2.2.4 机械加工余量
最大尺寸①
大于


40
40
63
63
100
10
160
160
250
250
400
400
630
630 1000
要求的机械加工余量等级
A② B②
C
D
E
F
G
H
J
K
0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.7 1 1.4 0.1 0.2 0.3 0.3 0.4 0.5 0.7 1 1.4 2 0.2 0.3 0.4 0.5 0.7 1 1.4 2 2.8 4 0.3 0.4 0.5 0.8 1.1 1.5 2.2 3 4 6 0.3 0.5 0.7 1 1.4 2 2.8 4 5.5 8
a.芯头高(或长)度和斜度 b.芯头装配间隙
①机械加工余量
机械加工余量是铸件上为切削加工而加大的 尺寸。
大量生产时余量可减小;单件小批量生产时,余量 应加大;
表面粗糙时,余量应加大(如铸钢); 非铁金属表面光洁且材料价格昂贵,余量应减小; 铸件尺寸越大,加工余量越大; 加工面与基准面距离越大,加工余量越大。 要求的机械加工余量RMA等级有10级,称之为A、B、 C、D、E、 F、G、H、J和K级(见表2.2.4)。推荐用于 各种铸造合金和铸造方法的RMA等级列在表2.2.5中。
微震压实造 型
在高频率、小振幅振动下,利用 型砂的惯性紧实作用并同时或随 后加压紧实型砂
抛砂造型
利用离心力抛出型砂,使型砂在 惯性作用下完成填砂和紧实
气冲造型
用蒸气或压缩空气瞬间膨胀所产 生的压力波紧实型砂
型砂不含粘结剂,被密封于砂箱
负压造型 与塑料膜之间,抽真空使干砂紧

设备结构简单,造价低,效率较高,紧实度 较均匀;但紧实度较低,噪声大。适用于成 批大量生产中小型铸件
③铸造圆角
设计制作模样时,相邻两壁之间的交角都应做成圆弧过渡的 铸造圆角。一般中、小型铸件的铸造圆角半径为3~5mm 。端盖 属小型铸件,未注铸造圆角均为R3~5mm 。
④起模斜度
为便于取模, 在模样或芯盒壁 上平行于起模方 向的表面所设计 的斜度。
起模斜度
JB/T5105—1991铸件模样起模斜度规定了砂型铸造 所用的起模斜度,如表2.2.7所示。
2.2 常用的铸造方法
2.2.1砂型铸造及产品生产检验(实训教学内容) 2.2.2 少、无切削的铸造方法(特种铸造) 2.2.3 常用铸造方法比较
2.2.1 砂型铸造及产品的生产检验
砂型铸造是指用型砂紧实成型的铸造 方法。是工业生产中应用最广泛的一种铸 造方法。
1.砂型铸造工艺简介
2.铸件的生产
3.铸件的检验
单件小批量生产具有二个分型 面的铸件
生产批量不大的大、中型质量 要求不高的铸件可节省下箱
整模造型
分 模 造 型
挖砂造型
假箱造型
活块造型
刮板造型
三箱造型
地坑造型
表2.2.3 常用的机器造型方法的主要特点和适用范围
造型方法
原理
主要特点和适用范围
震压造型
先以机械震击紧实型砂,再 用较低的比压(0.15~ 0.4MPa)压实
兼有湿砂型和干砂型 的优点
单件、小批量生 产中、大型铝合 金铸件和铸铁件
自硬砂型
常用水玻璃或合成树脂做 粘结剂,原型砂自身的化 学反应硬化,一般不需要 烘烤,或只经低温烘烤
铸型强度高,能耗低,生产 效率高,粉尘少;但成本较 高,有时易产生粘砂等缺陷
单件或批量生产 各类铸件,尤其 是大、中型铸件
2)造型方法选择
便于造型起模,造型和制作模样都麻烦
的铸件
用特制的刮板代替实体模样造型,可显著降低 单件小批量生产等截面或回转 模样成本。但操作复杂,要求工人技术水平高 体大、中型铸件
相关主题