当前位置:文档之家› 频谱分析仪对射频和音频谐波以及THD的测量方法分析

频谱分析仪对射频和音频谐波以及THD的测量方法分析

频谱分析仪对射频和音频谐波以及THD的测量方法分析
无线电工程应用不仅要对射频信号的谐波进行测量,有时还要确定音频信号的总谐波失真(THD)。

射频信号可能是已调信号或连续波信号。

这些信号可以由有漂移的压控振荡器(VCO)或稳定的锁相振荡器或合成器产生。

现代频谱分析仪能利用本文中所述方法来进行这些测量。

本文还将讨论如何断定在分析设备或被测器件(DUT)中是否产生谐波、对不同类型信号的最佳测量方法以及对数平均、电压单位和均方根值(ms)计算的利用。

我们这里所处理的所有信号均假定为周期信号,亦即它们的电压随时间的变化特性是重复的。

傅里叶变换分析可以将任何重复信号表示为若干正弦波之和。

按一定目的产生的频率最低的正弦波称为基频信号。

其它正弦波则称为谐波信号。

可以利用频谱分析仪来测量基频信号及其谐波信号的幅度。

谐波常常是人们不希望存在的。

在无线电发射机中,它们可能干扰射频频谱的其它用户。

例如,在外差接收机的本振(LO)中,谐波可能产生寄生信号。

因此,通常应对它们进行监控并将其减小到最低限度。

利用频谱分析仪对信号进行测量时,分析仪的电路也会引入其自身的某种失真。

为了进行精确测量,用户需要了解所测得的失真究竟是所考察的信号的一部分还是由于引人分析仪所引起的。

分析仪所产生的失真起因于某些微弱非线性特性(因为它没有理想线性特性)。

因此,可以用表明输出电压(O)与输入电压(I)之间的关系的泰勒(Taylor)级数来表示频谱分析仪的信号处理特性:
V0=K1Vi+K2Vi2+K3V3i(1)
式中,V0=输出电压,Vi=输入电压,K1、K2和K3均为常数利用上面的关系式,可以直接证明:输入电压加倍将引起Vi2项增加4倍(6dB),因而引起对正弦波的二次谐波响应增加4倍。

类似类推,三阶谐波失真随输入电平按三次方规律增加。

有两种方法即依靠技术指标或实验能断定分析仪是否对测出的失真有影响。

为了依据分析仪的谐波失真技术指标来判断其影响,利用对失真量级的了解,将相对于分析仪输入混频器上的特定信号以伽给出的那些技术指标变换成针对选择的输入电平给出的dBC。

图1示出这个过程的图解实例。

从图中可以看出,对频谱分析仪只规定了二阶失真和三阶失真。

而更高阶次的失真通常可忽略不计。

相关主题