谈化学纤维的各种性能及新型应用聚酰亚胺纤维是20 世纪90 年代兴起的一种高分子有机合成纤维,纤维分子结构中含有稳定的酰亚胺基团。
聚酰亚胺纤维具有耐腐蚀、耐辐射、耐高温和电绝缘等特性,同时还有很好的机械性能,其强度和模量全面超过了Kevlar-49 纤维,在航空航天、原子能、电子、核工业等领域得到了广泛的应用[1]。
由于聚酰亚胺纤维良好的力学性能和电绝缘性能,欧美及日本等一些发达国家已经将其应用扩展到了造纸领域[2, 3],并且做了初步的研究。
由于聚酰亚胺纤维性质稳定,表面钝化,没有活性基团,且经过打浆处理也不会产生分丝帚化,经过湿法成形得到的原纸强度较低。
为了提高其强度,需要用树脂对原纸进行浸渍处理,但是浸渍量过小纸页强度性能改善不明显,浸渍量过大则对纸页撕裂强度和伸缩率有较大影响。
聚酯纤维具有较好的介电性能和耐高温性能,其熔点在255~260℃之间,在205℃时开始产生黏结,初始分解温度在350℃以上,且纤维伸长率可达7.5%~12.5% ;同时还有优良的耐皱性、弹性和尺寸稳定性,有良好的电绝缘性能,耐日光,耐摩擦,不霉不蛀,有较好的耐化学试剂性能,能耐弱酸及弱碱,能够与其他具有耐高温性能和电绝缘性能的合成纤维混合抄造耐高温绝缘纸[4]。
在聚酰亚胺纤维原纸的抄造过程中添加一定比例的聚酯纤维,不但能够提高纸张的强度,还能在热压过程中发生熔融从而提高纤维间结合力,改善纸张的电气性能。
本文主要研究聚酯纤维对聚酰亚胺纤维纸基材料的强度性能、电气性能、耐高温性能和纸张表面结构的影响,旨在为开发高性能聚酰亚胺纤维纸基材料打下一定理论基础。
随着聚酯纤维添加量的增加,纤维间结合力增强,成纸的抗张指数和伸长率逐渐增大,而撕裂指数逐渐减小。
纸张的耐压强度和介电常数随着聚酯纤维添加量的增大而上升,但介电损耗正切值受其影响不大。
添加聚酯纤维后纤维间结合更加紧密,纸张孔隙率降低,当聚酯纤维添加量为9% 时纸张有较好的强度性能和电气性能,但是对纸张的热稳定性有一定影响。
聚乙烯醇纤维,即聚乙烯醇羧甲醛纤维,其英文缩写为P VA,也简称维纶、维尼纶。
1924年,德国化学家Hermann WO和Hannel W首先在实验室制得水溶性聚乙烯醇纤维;1939年,日本的樱田一郎等人将这种水溶性纤维用甲醛处理,制得耐热水的聚乙烯醇羧甲醛纤维,并于1950年由可乐丽公司和尤尼契卡公司实现工业化生产,商品名为维尼纶[1~3]。
聚乙烯醇纤维被认为是一种与棉花状态相近的合成纤维,该纤维强度、耐磨性、吸湿性较好,耐腐蚀、耐日晒,尤其是具有高强度、高模量的聚乙烯醇纤维发展迅速,作为工业原料,其应用范围日趋广泛[4]。
造纸用聚乙烯醇纤维目前主要分为易溶、难溶两种,根据其类型不同可用来生产增强纤维纸、水溶性纤维纸,也可作为合成纤维纸的黏胶纤维等使用[5~7]。
聚乙烯醇纤维既可单独抄纸,也可与植物纤维或其他合成纤维配抄,聚乙烯醇纤维的存在可以明显改善纸页的强度性能[4]。
在合成纤维中,聚乙烯醇纤维占据了十分重要的位置,在造纸行业中广泛应用。
涉及聚乙烯醇纤维纸的原创专利大多为日本公司所有,如可乐丽股份有限公司,而国内申请大多是在日本原创专利的基础上对制备工艺进行改进。
但近年来国内申请人的专利申请量明显提升,表明国内申请人的研发热情、专利布局意愿和知识产权保护意识都在增强,但是真正获得应用,并在市场中产生良好经济、社会效益的专利技术从绝对数量上来说仍很少。
此外,没有形成具有较强研发、生产能力的大公司和企业,国内申请人呈现分散、小型企业化、高校研究和个人申请多等特点。
笔者结合上述对造纸用聚乙烯醇纤维专利技术现状的分析,就如何发展高性能聚乙烯醇纤维纸给出如下建议:目前,日本的可乐丽、东丽等主要生产聚乙烯醇纤维的企业无论是在专利拥有量,还是企业销售量方面都占据主导地位,其中维纶纸水溶性材料专利技术已达到一个相当成熟的地步。
而最近几年国内的企业如中国印钞造币总公司在造纸用聚乙烯醇纤维的研发方面有所突破,其通过共混改性、表面改性等方式提高了聚乙烯醇纤维的强度、防伪性能。
目前国内对导电维纶纸、核壳结构的聚乙烯醇维纶纸等并没有行研究、开发,国内申请人可尝试从造纸用聚乙烯醇纤维的制备过程出发,通过工艺过程的改进,或是通过物理共混、化学交联等改性方式制备得到性能优越的造纸用聚乙烯醇纤维。
同时,需要国家在这方面做好产业布局和规划,出台相应的政策鼓励和扶持企业进行研发和生产,做大做强一批龙头企业,鼓励优势企业之间进行强强联合,使产业链逐步完善,有利于优势互补和技术融合和促进;对具有重大开发利用价值的环保技术与装备组织攻关、试验鉴定和成果转化,建立范工程后进行推广应用。
聚乙烯醇( PVA) 纤维是合成纤维主要品种之一,早在1924 年德国Hermann 和Haehnel 就将聚醋酸乙烯醇解制得聚乙烯醇,随后又以其水溶液干法纺丝制得纤维。
目前聚乙烯醇纤维主要有湿法、干法、凝胶法3 种纺丝方法,干法纺丝以其工艺流程短、环保等优异特点而被用来生产聚乙烯醇水溶长丝和其他多功能性或差别化聚乙烯醇纤维[1]。
干法纺丝过程较复杂,纺丝原液经喷丝孔挤出后在纺丝甬道中有拉伸流动,丝条在干燥凝固成形的过程中伴随着传热和传质。
Ohzawa 等[2 - 3]曾对聚乙烯醇等几种干纺体系进行模拟,Sano Y[4]基于纺丝工艺对聚乙烯醇干纺体系进行了较准确的数学模拟,并对丝条径向浓度分布进行了研究。
但已报道的干法纺丝文献都采用逆流式进行模拟,而顺流式干法纺丝纤维成形较缓和,更有利于生产聚乙烯醇水溶长丝[1]。
本文通过建立一维顺流式干法纺丝模型,从理论上研究了丝条凝固成形过程中速度、浓度、温度、张力的分布规律。
在聚乙烯醇顺流式干法成形过程中,温度的降低使丝条凝固,在纺丝速度较低的情况下,喷丝头处的张力最大。
泵供量的增加使甬道风对丝条的干燥时间增长,使丝条在纺程更远处凝固,丝条内溶剂含量是控制丝条温度变化的关键因素。
提高甬道风风速不利于纺丝速度的提高,而提高甬道风温度对纺丝速度的提高影响很小。
在相同泵供量和纺丝速度下,增加溶剂溶度会使溶剂的蒸发速率减慢,丝条不易干燥固化。
增加卷绕速度可以加强传热传质过程,使溶剂更快地从丝条中挥发出来,但在较高的纺丝速度范围内,丝条溶剂含量变化不大。
采用化纤产业技术创新战略联盟研究开发的系列新一代仿棉聚酯纤维,商品名称为“逸绵”。
其主要通过聚合改性克服常规聚酯纤维的缺点,赋予了聚酯纤维新的特性,使其服用舒适性大幅提高。
易染型聚酯纤维熔融温度约为236 ℃,介于锦纶6 和常规聚酯纤维之间,比常规聚酯纤维低20 ℃左右,其DSC 测试结果如图1 所示[1]。
易染型聚酯纤维的玻璃化温度比常规聚酯纤维低10 ℃左右,聚酰胺基团的引入破坏了聚酯纤维大分子的规整性,使纤维的无定形区增加,染料分子更容易进入纤维内部,所以,易染型聚酯纤维可以实现分散染料无载体常压沸染。
易染型聚酯纤维目前主推品种为棉型短纤,单丝线密度为1. 2 ~ 1. 6 dtex,断裂强度为2. 2 ~2. 8 cN / dtex,初始模量≤50 cN / dtex,断裂伸长率为20% ~ 35% ,回潮率为0. 8% 左右。
与常规聚酯纤维相比,易染型聚酯纤维的断裂强度和初始模量均大幅降低,只有常规聚酯纤维的50% 左右,这个强度可以满足服用要求,同时又使织物是有良好的抗起球性能。
易染型聚酯纤维的初始模量低于长绒棉纤维,低的初始模量使织物触感更加柔软[2 - 3],而且回潮率是常规聚酯纤维的2 倍,有助于改善其亲水性能和抗静电性能。
易染型聚酯纤维是常规聚酯纤维的升级换代产品,其强度适中,手感柔软,光泽柔和,抗起球性好,在强度、外观、手感、亲水性等多个方面都有优良的仿棉特性。
易染型聚酯纤维可常压无载体染色,摆脱了常规聚酯纤维需要高温高压染色的限制,对染色设备的适应性更广,其和棉混纺织物易于一浴一步染色,符合节能减排理念。
易染型聚酯纤维有良好的吸湿速干性能,其织物芯吸高度、液态水扩散速率、干燥速率等指标均优于纯棉和常规聚酯纤维织物,适合于各种纯纺或混纺产品,是开发各种休闲、运动面料的优良原料,应用前景非常广阔。
上世纪80 年代悄然掀起的高端智能纺织材料,在生物医学、航空航天、环境卫生、军事技术、建筑行业、日常生活诸多领域得到了广泛的应用,引起了大家的高度重视。
随着时代的发展,高端智能纺织材料还将给人们带来更加惊喜的应用研究成果在生物医学领域的应用智能材料的特点,使其在医用领域已有了一定的应用,如作为药物释放载体已有了实质性的进展,原理是利用智能材料来感知病变部位各种环境信息的变化,使药物在预定的时间或地点释放出所需要的剂量,实现药物的定点、定时、定量释放。
目前利用外界刺激的智能材料主要有物理、化学刺激敏感型材料如pH 敏感材料、温度敏感材料;生物化学敏感型材料如葡萄糖敏感型材料、酶敏感型材料、基于抗体识别功能设计的材料等。
纺织纤维材料及纺织品以其自身优势如良好的柔韧性、机械性在未来智能材料及其组元材料开发中具有重要的地位。
首先,从纤维加工制备的角度考虑,可以通过纤维的功能化如内部包埋药物、纤维表面接枝改性引入特定功能基团等,来构筑智能材料应用于生物医用领域。
当这些具有特定功能的纤维材料或纺织品与病人病变部位接触时,智能材料能够迅速检测出病变部位释放出的物质,并作出响应如释放药物等,当病变部位好转到一定程度或治愈后,与其接触的智能纺织品停止释放药物。
如将药物置于聚(N- 异丙基酰)接枝的聚乙烯醇凝胶纤维中,该纤维能够通过外界温度的变化(变化范围20~30 ℃)自动开启和闭合,从而实现自动控制药物的释放;pH 敏感型水凝胶纤维载药后在人体肠道内部可以通过内部环境中酸碱性的改变,来实现选择性地释放所载的药物。
今后,基于智能材料对外界刺激反馈的不同作用原理,可以着重研究温敏、光敏、磁敏等智能材料及组元,来开发具有多用途、特殊功能的智能纺织品。
由具有形状记忆功能的纤维织制的纺织品并包含药物,可以在医疗领域用作智能绷带。
如经聚乙二醇处理过的棉、聚酯或尼龙/聚氯酯共聚纤维,含有交联的多元醇,这种编织或机织的纺织品遇到血液或酒精/ 水混合物等极性消毒溶液时会收缩。
用这种纺织品做绷带,它在血液中收缩时使伤口上所产生的压力可以止血,而绷带干燥时可回复至原始尺寸,压力去除。
因此,它可以用于身体某些部位出血时的包扎。
2 在航空航天领域的应用航空航天领域使用的材料需要经受住恶劣环境的影响,它需要对自身状况进行诊断,并能自动加固或自动修复材料中的伤痕或裂纹,从而避免大灾难事故的发生。
航空航天飞行器的结构要求轻质、高可靠性、高维护性、高生存能力,为此,必须增加材料的智能性。
目前智能材料结构在航空飞行器上的应用有智能蒙皮、自适应机翼、振动噪声控制和结构健康监测等。