激光3D打印将中国制造业“逼上梁山”虽然对第三次工业革命何时到来,国内各界仍普遍持谨慎态度。
然而,3D 打印、人工智能、新材料、新一代信息技术等一系列关键技术的成熟和产业化,都透露出新一轮工业革命并非空穴来风。
传统制造业的国际分工格局,正逐渐被新技术带来的分散化生产以及消费者多元化的需求打破。
特别是2008年金融危机之后,那些走向产业空心化的国家深刻认识到制造业对于国民经济的重要性,遂寄望于新技术将制造业拉回。
如果未来在以3D打印为代表的数字化制造技术上失去话语权,中国制造业将遭遇残酷的打击:传统的制造手段和生产模式将被取代;人力成本低廉等比较优势必然丧失;中国企业踯躅于产业链低端的现实将进一步恶化。
而中国是否能抓住这一轮技术创新的机遇,很大程度上是在逼问中国是否有能力改革现有的创新体系。
颜永年决心最后一搏.74岁的他,在2012年创立了昆山永年先进制造技术有限公司,并出任董事长,为此,他把家从北京搬到了昆山阳澄湖边。
相比创办企业,颜永年在学术上的成就已有定论,正是他在清华大学任教时把3D打印的概念和早期技术引入国内。
在颜永年看来,制造科学如果脱离了产业化,含金量就大打折扣,因此退休五年后,他仍打算实现在校任教时未能完成的心愿-—办一家完全市场化的公司,将研究成果产业化,3D打印就是那项昭示未来的研究成果.3D打印,是增材制造的俗称,其核心是数字化、智能化制造与材料科学的结合.与传统上对原材料进行切削的减材制造方法正相反,3D打印的过程好比用砖头砌墙,逐层增加材料,最终形成物件.以3D打印为代表的数字化制造技术,被《经济学人》杂志认为是引发第三次工业革命的关键因素,“其将改写制造业的生产方式,进而改变产业链的运作模式"。
首先,数字化制造技术将大大减少直接从事生产的操作工人,劳动力所占生产成本比例随之下降。
此外,数字化制造的个性化、快捷性和低成本能够更快地适应本地市场需求的变化,包括满足小批量产品的生产需求。
这些都促使发达国家鼓励厂商把部分制造业迁回本国,对中国这样的传统制造业大国无疑敲响了警钟。
不过,中国在3D打印方面的理论研究和尝试并不算晚.富庶而开放的江浙一带已有不少企业在运用这项技术,仅昆山一地,就有20余家企业利用3D打印为周边发达的产业集群提供设计打样服务。
而距昆山1.4万多公里的美国纽约,有着3D云打印之称的Shapeways正忙着搬家,将其运营重心从荷兰移至纽约。
Shapeways在皇后区占地2.5万平方米的工厂取名为“未来工厂”,这是全世界规模最大的3D打印工厂。
2012年10月18日,在工厂开业仪式上,纽约市长迈克尔•布隆伯格(MichaelBloomberg)手中那把剪彩的剪刀,就是3D打印制造。
隔河相望的曼哈顿区,聚集了众多年轻的3D打印企业。
中国科学院自动化研究所研究员王飞跃观察,即使在2008年金融危机后,这些企业仍保持快速发展。
自从工厂出现以来,产品与消费者之间的距离从未如此接近过。
3D打印给消费者带来了在大规模生产和个性化制造之间进行选择的自由.如果你想要一个与自己相貌一样的玩偶,用3D打印机制作,成本可能只要100元;如果委托工厂,也许要花1万元。
业内人士将2012年的3D打印机视为像1977年个人计算机和1990年网页浏览器一样,是一个崭新的市场从萌芽期进入成长期的转折点。
虽然3D打印技术目前尚未颠覆传统制造业-—传统制造业的规模效应依然占据优势,但前者正慢慢抢走市场份额。
工信部已经嗅出了危机的味道。
2012年12月14日,工信部副部长苏波在增材制造技术国际论坛上透露,中国将提速3D打印技术的研发和产业化.这一信息标志着3D打印正式纳入了中国工业主管部门的视野.一、激光快速成形将是3D打印率先突破的方向激光快速成形是较为成熟的先进制造方式,激光快速成形是3D打印制造的一种,是利用计算机模拟切片的技术,逐步利用高能激光束熔化送到熔池中的粉末,如金属、陶瓷、塑料、砂等,从而逐步堆积成一定形状的零件和部件。
说的形象点,就是先利用计算机切片,将零件分成一层一层,然后每一层利用类似于“十字绣”的工艺,一点一点用激光配合金属粉末堆积,最后一层一层拼接起来。
由于该技术将多维制造变为简单的由下至上的二维叠加,大大降低了设计与制造的复杂度,甚至可以制造传统方式无法加工的奇异结构,如封闭内部空腔、多层嵌套等。
快速制造技术与传统工艺相比具有独特的优越性和特点。
一、突破了传统去除加工方法的限制,无需零件毛坯和大型锻造、铸造设备及模具,可实现材料制备与成型的一体化,显著缩短零件制造周期、降低制造成本、提高材料利用率;二、在同一套生产系统上可进行不同材料零件的制造,具有广泛的材料及设计适应性;三、整个生产过程数字化,可以方便地通过材料及工艺的调节与控制,实现多种材料在同一零件上的集成制造,满足零件不同部位的不同性能需要;四、由于采用非接触加工的方式,没有工具更换和磨损之类的问题,无切割噪音、振动以及废水、废料等排放,符合现代绿色制造理念.快速制造思想产生于上世纪80年代。
1992年,美国DTM公司(现已并入美国3DSystems公司)研制成功世界第一台采用粉末材料的激光快速制造装备。
美国、德国、日本等国的制造企业将之用于蜡、砂型的快速制造,大大提升了传统铸造工艺的技术水平。
激光快速成形在航空航天、汽车、船舶制造领域优势巨大快速成形技术是一种数字化的添加材料成型技术,对于产品的几何形状并没有约束,可以说“只要你想得到,我就可以做出来"。
因此,设计零部件时可以采用最优的结构设计,而无需顾虑加工问题.而这正是快速制造技术最大优势所在-—拓展设计人员的设计空间,尤其是在航空航天、武器装备、汽车等动力装备结构复杂的高端领域.激光制造技术在航空领域的应用直接体现在航空用钛合金结构件的直接制造以及航空发动机零件的快速修复方面.欧美已将快速制造技术视为提升航空航天、汽车及武器装备等核心领域水平的关键支撑技术之一。
例如,美国能源部大额资助Sandia及LosAlomos国家实验室,开展高性能金属零部件快速制造技术。
在美国空军、陆军及国防部联合资助下,该技术在波音、军火巨头洛克西德•马丁公司、国防供应商诺斯洛普格鲁曼等飞机制造企业获得实际应用。
2001年在美国国防部的支持下激光快速成形技术由研究转化为F/A-18E/F、F-22、JSF等先进歼击机上的装机应用。
2002年以来激光制造技术成为美国航空航天国防武器装备大型钛合金结构件的核心制造新技术之一。
飞机上大型机构件的传统生产主要采用“锻造+机加工”的方法,该方法工序繁多、工艺复杂、材料利用率低、机械加工量大、数控加工效率低、制造成本高、生产周期长,采用激光制造技术直接制造大型钛合金结构件显示了巨大的优势.同时,该工艺可直接制造高性能金属零部件,还可制造出薄壁、微孔、中空等特殊结构零部件,在航空航天、汽车等重要领域具有广泛的应用前景。
值得一提的是,目前整个激光材料加工行业按产值从大到小排主要分激光切割、激光打标、激光钻孔、激光焊接、激光表面热处理、激光熔覆、激光合金化等子行业。
其中激光切割、钻孔、焊接对激光器和机床精度和控制工艺要求较高,以美、德、日为首的传统制造业强国掌握了尖端技术。
但是在激光表面热处理、激光合金化及激光熔覆领域,则是我国的强项,而且我国本身占了全球激光材料加工的15%市场份额,在激光熔覆领域则占到了半壁江山。
激光快速成形实际上就是激光熔覆的升级版,相对于激光熔覆是表面优质涂层的制备,直接成型则是整体制造的工艺,在控制要求上更为困难和严格,但总体来说,和熔覆是一脉相承的,也就是说,中国的科研力量在这个领域是国际领先的。
我们预计,激光快速成形技术仅在钛合金制造领域,在我国航空、船舶领域的市场规模为20亿元。
未来随着我国航空、航天、船舶领域的快速发展,和在其他应用领域的拓展,以及该技术带来的新市场,激光快速成形技术的空间巨大。
3D激光打印产业链从最初的原材料处理、设备制造直到最后的打印应用与服务,即使只有一小部分消费品通过3D激光打印的方式来制造,这也将是一个万亿规模的巨大市场。
作为3D打印制造的一种,激光快速成形在航空航天、汽车、船舶制造领域优势巨大。
二、革新的号角美国3D打印设备巨头3DSystems(DDD。
NYSE)的创始人,查尔斯•胡尔(CharlesW.Hull)比颜永年小1岁,他至今仍管理着公司,担任执行副主席一职,还是公司的首席技术官.1982年,在一家紫外线设备生产企业任职的胡尔,尝试把光学技术应用于快速成型领域。
他将一种液态光敏树脂倒入大容器中,在容器里放置一个升降平台,容器上方的紫外激光器根据计算机指令照射液面,所到之处,材料会发生光聚合反应,迅速从液态转变为固态,当一层打印完成后,未被照射的地方仍保持液态,此时在液面以下0.05毫米—0。
15毫米的升降平台会下降一层,激光器开始打印第二层。
这个过程不断重复,直到整个物件制造完毕(参见图1)。
这项立体光刻(SLA)技术就是最早的3D打印.胡尔于1986年申请了专利,并成立3DSystems公司。
“30年前发明这项技术时,我们觉得这对制造业来说是一个机会."胡尔的合伙人、3DSystems公司总裁亚伯拉罕·雷切特勒(AbrahamReichental)对《财经》记者说,“现在,客户比我们还要积极,推动我们进行适用性研究。
五年前,大部分客户购买设备用于设计;从两年前开始,有一半的客户用在了直接制造上。
”3D打印不需要模具,可以直接进行样品原型制造,因而大大缩短了从图纸到实物的时间.任何形状复杂的零件,都可以被分解为一系列二维制造的叠加。
这种快速制造的理念还衍生出多种不同的技术类型,除了SLA,常见的有熔融沉积造型(FDM)、选择性激光烧结(SLS)、三维打印(3DP)等,其基本工作原理都是逐层增加材料,最终形成物件,因此,这些技术都被通俗地称作3D打印。
许多种“耗材"都可使用3D打印:沙子、人造橡胶、塑料、金属,甚至生物材料;3D打印的应用范围已经渗入生物医疗、航空、汽车、工业设计等多个行业,且仍在不断拓宽。
“就连美国海军都购买了90台机器用于航空领域的研发。
”雷切特勒说。
全世界的实验室里,正在实践一些更具雄心的想法:澳大利亚的研究人员加快了制造金属零件的速度,试制出打印汽车金属零部件的设备;意大利的一个研究团队正开发用于特种建筑的3D打印机,计划使用月球尘埃为材料,在月球上快速建造人类基地。
除了省去制造模具的成本以外,相比传统制造工艺,3D打印对材料的利用率也惊人。
美国F—22猛禽战斗机大量使用钛合金结构件,如使用传统的整体锻造方法,最大的钛合金整体加强框材料利用率不到4。