当前位置:
文档之家› 化学气相沉积(CVD)原理及其薄膜制备ppt课件
化学气相沉积(CVD)原理及其薄膜制备ppt课件
Seminar Ⅰ
化学气相沉积(CVD)原理及其 薄膜制备
报告人:程士敏 导 师:李 灿 研究员
精选ppt
2008. 05. 27
1
概要
➢ CVD 原理 定义 气态物种输运 沉积过程热力学和动力学
➢ CVD 技术分类 ➢ CVD 制备薄膜 ➢ CVD 技术的优缺点
精选ppt
2
CVD (Chemical Vapor Deposition)是通过气态物质在气 相或气固界面上发生反应生成固态粉体或薄膜材料的过程
前驱物 气体
反应 沉积
气态源 载气
液态源 载气
衬底
气相输运
衬底
托架
卧式反应器 立式反应器
固态源
精选ppt
3
孟广耀,化学气相淀积与无机新材料,北京:科学出版社,1984
实验室用典型CVD设备沉积SiC涂层装置简图
化学气相沉积系统
排出气控制系统
气相前驱体供给系统
精选ppt
4
K.L. Choy. / Progress in Materials Science 48 (2003) 57–170
(x) x v
平均附面层厚度:
1 l
l
0(x)dx
2 3
l v
hCi
D
3D 2
l
Pohlhauson 更精确结果:
精选ppt
7
R.E. Treybel. , “Mass-Transfer Operations” ch. 3, McGraw-Hill Book Co. (1955).
输运流量的计算
系统各物种间的 化学反应和
化学平衡方程式
体系物料的 质量守恒方程式
计算机 数值解法
各组分的 平衡分压和 固相组成
已有实验资料
沉积过程机理
优化沉积工艺参数
对于非动力学控制的过程,热力学分析可以定量描述沉积速 率和沉积层组成,有助于了解精选沉pp积t 机制和选择最佳沉积条件9
沉积过程动力学
——CVD研究的核心
7.副产物和未反应的反应物,离开沉
积区,从系统中排出。 速
率
3、4、5 表面步骤
控 制
2、6、7 物质输运步骤
步
1 进气步骤
精选ppt
表面控制或化学动力学控制 质量输运控制或质量转移控制 进气控制或热力学控制 10
沉积过程动力学
实验研究 实验规律
沉积层生长速率、质量与 沉积参数的关系规律
原子和分子尺度推断 材料沉积的表面过程
PABn
JABn hABn(P A 0BnP ABn) (粒子数/厘米2·秒)
精选ppt
8
孟广耀,化学气相淀积与无机新材料,北京:科学出版社,1984
沉积过程热力学
CVD过程的热力学分析 运用化学平衡计算,估算沉积系统
中与某特定组分的固相处于平衡的气态物种的分压值,用以预言 沉积的程度和各种反应参数对沉积过程的影响。
➢动力学控制体系: 从原子水平上描述确定沉积过精选程ppt机理,优化最佳生长条件。11
实验参量对过程控制机制和沉积速率的影响
实例:A(g)=C(s)+B(g)
Ⅰ Ⅱ
A向C表面转移; A在表面上反应,形成沉积物C和副产物B;
Ⅲ B从表面扩散离去。
沉积速率: rP A 0/[a e 1 E a/R T b T 1 1 /2(1 C e 1 H /R T)]
实例:热分解反应 ABn(g)+C(g)=A(s)+nB(g)+C(g)
粒子流密度: JABnhABn(P A 0BnP ABn) JB h B(P B 0P B)h B P B
物料守恒:
1 J ABn n J B
气固界面热力学平衡:
K
P
n B
PABn
KPABn
(nhABn hB
)n(PA0Bn
PABn)n
CVD:气固表面多相化学反应
1.反应气体混合物向沉积区输运;
2.反应物由主气流向生长表面转移;
3.反应(和非反应)分子被表面吸附;
4.吸附物之间或吸附物与气态物种之
间在表面或表面附近发生反应,形
成成晶粒子和气体副产物,成晶粒
子经表面扩散排入晶格点阵;
5.副产物分子从表面上解吸;
6.副产物由表面区向主气流空间扩散;
开管气流系统中的质量输运
——气态组分向生长表面的转移
滞流薄层模型 气态组分从主气流向生长表面转移需通过附
面层,气态组分通过附面层向生长表面转移
一般是靠扩散进行。
粒子流密度: 质量转移系数:
Ji hCi(Ci0Ci)
Ji hPi(Pi0Pi)
hC i(厘 米 /秒 )D / hPi D/RT
附面层厚度:
气态物种的输运
热力学位的差异-驱动力 (压力差、分压或浓度梯度和温度梯度)
气体分子定向流动、对流或扩散
气态反应物或生成物的转移沉积速率、沉机理和沉积层质量精选ppt
5
开管气流系统中的质量输运
——水平反应管中的气流状态 层流和紊流 通常用流体的雷诺数(Re)来判断 R e d
ρ、v、η分别为流体的密度、线流速和粘度系数,d为圆管直径
临界雷诺数: R>R上临 紊流
R<R下临 层流
光滑圆管: R上临=12000~13000 R下临=1900~2000
R上临 取决于流动形状,特征长度,入口处和流动方向上的扰动
紊流
层流
气
流
入
口
卧式硅外延反应器中气流模型
附面层模型
S.E. Brodshaw. /精I选ntp.pJt. Electron., 21 (1966) 205; 23 (19676) 381 Schlichting H. , “Boundary Layer Theory” 4th. ch. 7, McGraw-Hill Book Co. (1955).
沉积过程速 率控制机制
深化认识 过程机理
调整实验条件 改进工艺状况
鉴别沉积过程控制机制的最有力的方法,就是实验测定生长参数 (如温度、反应物分压、气体流速和衬底状况等)对沉积速率的影响
➢供质控制过程(热力学控制过程): 分析沉积程度与沉积温度、反应剂分压的关系;
➢扩散控制系统的分析对象是: 沉积层厚度,均匀性和最佳效率等;
沉
质量输运控制
气
积
体
温
流
度
速
的
的
影 热力学控制
影
响
动力学控制 响
精选ppt
12
CVD技术分类(沉积过程能量提供方式)
热活化CVD (conventional CVD, low pressure CVD) 等离子体增强CVD (plasma enhanced CVD) 光CVD (photo-assisted CVD) 原子层沉积 (atomic layer epitaxy) 金属有机CVD (metal-organic CVD) 脉冲注入金属有机CVD (pulsed injection MOCVD) 气溶胶CVD (aerosol assisted CVD) 火焰CVD (flame assisted CVD ) 电化学CVD (electrochemical VD) 化学气相渗透 (chemical vapor infiltration) 热丝CVD (hot-wire CVD)