精密加工技术的发展及应用班级:拓展3班姓名:***学号:************精密加工技术的发展及应用摘要:精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。
它综合应用了机械技术发展的新成果以及现代电子、传感技术、光学和计算机等高新技术,是高科技领域中的基础技术,在国防科学技术现代化和国民经济建设中发挥着至关重要的作用,同时作为现代高科技的基础技术和重要组成部分,推动着半导体技术、光电技术、材料科学等多门技术的交叉发展进步。
1、精密机械加工简介加工精度达到 1微米的机械加工方法。
精密机械加工是在严格控制的环境条件下,使用精密机床和精密量具和量仪来实现的。
加工精度达到和超过 0.1微米称超精密机械加工。
在航空航天工业中,精密机械加工主要用于加工飞行器控制设备中的精密机械零件,如液压和气动伺服机构中的精密配合件、陀螺仪的框架、壳体,气浮、液浮轴承组件和浮子等。
飞行器精密零件的结构复杂、刚度小、要求精度很高,而且难加工材料所占的比重较大。
精密机械加工的工艺效果是:①零件的几何形状和相互位置精度达到微米或角秒级;②零件的界限或特征尺寸公差在微米以下;③零件表面微观不平度(表面不平度平均高度差)小于0.1 微米;④互配件能满足配合力的要求;⑤部分零件还能满足精确的力学或其他物理特性要求,如浮子陀螺仪扭杆的扭转刚度、挠性元件的刚度系数等。
精密机械加工主要有精车、精镗、精铣、精磨和研磨等工艺。
①精车和精镗:飞行器大多数精密的轻合金(铝或镁合金等)零件多采用这种方法加工。
一般用天然单晶金刚石刀具,刀刃圆弧半径小于0.1微米。
在高精度车床上加工可获得1微米的精度和平均高度差小于0.2微米的表面不平度,坐标精度可达±2微米。
②精铣:用于加工形状复杂的铝或铍合金结构件。
依靠机床的导轨和主轴的精度来获得较高的相互位置精度。
使用经仔细研磨的金刚石刀头进行高速铣切可获得精确的镜面。
③精磨:用于加工轴或孔类零件。
这类零件多数采用淬硬钢,有很高的硬度。
大多数高精度磨床主轴采用静压或动压液体轴承,以保证高稳定度。
磨削的极限精度除受机床主轴和床身刚度的影响外,还与砂轮的选择和平衡、工件中心孔的加工精度等因素有关。
精磨可获得 1微米的尺寸精度和0.5微米的不圆度。
④研磨:利用配合件互研的原理对被加工表面上不规则的凸起部位进行选择加工。
磨粒直径、切削力和切削热均可精确控制,因而是精密加工技术中获得最高精度的加工方法。
飞行器的精密伺服部件中的液压或气动配合件、动压陀螺马达的轴承零件都采用这种方法加工,以达到0.1甚至0.01微米的精度和0.005微米的微观不平度。
2 国内精密加工技术发展现状2.1 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。
70年代美国空军主持制订“锻造工艺现代化计划”,目的是使锻造这一重要工艺实现现代化,更多地使用CAD/CAM,使新锻件的制造周期减少75%。
1992年,美国国防部提出了“军用关键技术清单”,其中包含了等压成型工艺、数控计算机控制旋压、塑变和剪切成形机械、超塑成型/扩散连接工艺、液压延伸成型工艺等精密塑性成型工艺。
国外近年来还发展了以航空航天产品为应用对象的“大型模锻件的锻造及叶片精锻工艺”、“快速凝固粉末层压工艺”、“大型复杂结构件强力旋压成型工艺”、“难变形材料超塑成形工艺”、“先进材料(如金属基复合材料、陶瓷基复合材料等)成形工艺”等。
我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。
与此同时,还基本上掌握了锌、铜、铝、钦合金的超塑成形工艺,最小成形厚度可达0.3mm,形状也较复杂。
此外,国外已广泛应用精密模压成形技术制造武器。
常用的精密模压成形技术,如闭塞式锻造、采用分流原理的精密成形及等温成形等国外已用于军工生产。
目前,精密模压技术在我国应用还较少,精度也较差,国外精度为±0.05—0.10mm,我国为±0.1—0.25mm。
2.2 孔加工技术的发展现状及应用近年来,汽车、模具零部件、金属加工大都采用以CNC机床为中心的生产形态,进行孔加工时,也大都采用加工中心、CNC电加工机床等先进设备,高速、高精度钻削加工已提上议事日程。
无论哪个领域的孔加工,实现高精度和高速化都是取得用户订单的重要竞争手段。
近年来,随着高速铣削的出现,以铣削刀具为中心的切削加工正在进入高速高精度化的加工时期。
在孔加工作业中,目前仍大量使用高速钢麻花钻,但各企业之间在孔加工精度和加工效率方面已逐渐拉开了差距。
高速切削钻头的材料以陶瓷涂层硬质合金为主,如MAZAK公司和森精机制作所在加工铸铁时,即采用了陶瓷涂层钻头。
在加工铝合金等有色材料时,可采用金刚石涂层硬质合金钻头、DLC涂层硬质合金钻头或带金刚石烧结体刀齿的钻头。
高速高精度孔加工除采用CNC切削方式对孔进行精密加工外,还可采用镗削和铰削等方式对孔进行高精度加工。
随着加工中心主轴的高速化,已可采用镗削工具对孔进行高速精密加工。
随着IT相关产业的发展,近年来,光学和电子工业所用装置的零部件产品的需求急速增长,这种增长刺激了微细形状及高精度加工技术的迅速发展。
其中,微细孔加工技术的开发应用尤其引人注目。
微细孔加工早已在印刷电路板等加工中加以应用,包括钢材在内的多种被加工材料,均可用钻头进行小直径加工。
目前,小直径孔加工中,利用钻头切削的直径最小可至φ50μm左右。
小于φ50μm的孔则多采用电加工来完成。
为了抑制毛刺的产生,许多研究者提出可采用超声波振动切削的方式。
目前,正在探索一种应用范围广而且工艺合理的超声波振动切削模式,其中包括研究机床的适应特性等内容。
随着这些问题的顺利解决,今后可望更好地实现直径更小的微小深孔加工,加工精度会更高2.3 特种热处理的发展现状与应用特种热处理工艺是国防工业系统关键制造技术之一。
真空热处理以其特有的无污梁、无氧化、工件变形小和适用范围广等优点,广泛用于航空航天结构件处理,如齿轮结构件表面渗碳或渗氮,导弹和航天器各种合金或钢件的去应力、增强或增韧处理等。
典型结构如:仪表零件、传动结构、燃料贮箱、发动机壳体等;美国热处理炉约有50%以上为真空热处理炉。
真空热处理炉已广泛采用了计算机控制,目前已发展到真空化学热处理和真空气淬热处理,包括高压真空气淬、高流率真空气淬和高压高流率真空气淬技术等。
另外,激光热处理技术在国外已广泛用于航空、航天、电子、仪表等领域,如各种复杂表面件、微型构件、需局部强化处理构件、微型电子器件、大规模集成电路的生产和修补、精密光学元件、精密测量元件等。
2.4 数控电火花加工新工艺的应用a.标准化夹具数控电火花加工为保证极高的重复定位精度且不降低加工效率,采用快速装夹的标准化夹具。
标准化夹具,是一种快速精密定位的工艺方法,它的使用大大减少了数控电火花加工过程中的装夹定位时间,有效地提升了企业的竞争力。
目前有瑞士的EROWA和瑞典的3R装置可实现快速精密定位。
b.混粉加工方法在放电加工液内混入粉末添加剂,以高速获得光泽面的加工方法称之为混粉加工。
该方法主要应用于复杂模具型腔,尤其是不便于进行抛光作业的复杂曲面的精密加工。
可降低零件表面粗糙度值,省去手工抛光工序,提高零件的使用性能(如寿命、耐磨性、耐腐蚀性、脱模性等)。
混粉加工技术的发展,使精密型腔模具镜面加工成为现实。
c.摇动加工方法电火花加工复杂型腔时,可根据被加工部位的摇动图形、摇动量的形状及精度的要求,选用电极不断摇动的方法,获得侧面与底面更均匀的表面粗糙度,更容易控制加工尺寸,实现小间隙放电条件下的稳定加工。
d.多轴联动加工方法近年来,随着模具工业和IT技术的发展,多轴联动电火花加工技术取得了长足的进步。
模具企业采用多轴联动的方法来提高加工性能,如清角部位在加工可行的情况下采用X、Y、Z三轴联动的方法,即斜向加工,避免了因加工部位面积小而发生放电不稳定的现象。
模具潜伏式胶口的加工通过对电极斜度装夹定位的设计,也可进行斜向多轴联动加工。
采用多轴回转系统与多种直线运动协调组合成多种复合运动方式,可适应不同种类工件的加工要求,扩大数控电火花加工的加工范围,提高其在精密加工方面的比较优势和技术效益。
3、世界发展状况世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。
欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。
如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。
由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。
此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。
日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。
日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。
日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。
日本超精密加我国精密和超精密加工发展策略我国精密和超精密加工经过数十年的努力,日趋成熟。
不论是精密机床、金刚石工具,还是精密加工工艺已形成了一整套完整的精密制造技术系统,为推动机械制造向更高层次发展奠定了基础。
正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。
随着科学技术的飞速发展和市场竞争日益激烈?越来越多的制造业开始将大量的人力、财力和物力投入先进的制造技术和先进的制造模式的研究和实施策略之中。
4、精密加工技术研究与开发趋势(1)精密加工技术努力开发加工单位极小的精密加工方法,必须在加工原理的本身就使其误差分散在1 nm以下的水平。
目前加工单位比较小的加工方法主要有弹性破坏加工、化工加工、离子束加工、等离子加工等。
目前的金刚石切削和金刚石砂轮精密磨削从其加工原理上看,其加工单位就很大。
(2)开发精密的机械机构不论是加工装置还是测量装置,都需要精密的机械机构,包括导轨、进给机构及轴承等,超精密空气静压导轨是目前最好的导轨,其直线度可达0.1~0.2µm/250mm,通过补偿技术还可以进一步提高直线度,但是它没有液压静压导轨的刚性大。
同时,由于空气静压导轨的气膜厚度只有10µm左右,所以在使用过程中,要注意防尘。
另外,在导轨的设计中,还可以用多根导轨并联来均化气膜的误差。
用高弹性合金、红宝石制造的滚动导轨,系统误差在0.5µm左右,随机误差不超过0.1µm,确保产品的可靠性。