医用高分子材料应用及研究进展摘要:随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。
本文介绍了国内外生物医用高分子材料的分类、特性及研究成果,详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,展望了未来的生物医用高分子材料的发展趋势。
关键词:医用高分子应用状况发展趋势1.引言医用高分子是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。
医用高分子材料[1 ]是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。
2.医用高分字的现状2.1医用高分子材料的目前需求人的健康长寿依赖于医学的发展。
现代医学的进步已经越来越依赖于生物材料和器械的发展,没有医用材料的医学诊断和治疗在现代医学中几乎是不可想象的。
目前全球大量用于医疗器械的生物医学材料主要有20 种,其中医用高分子12 种,金属4 种,陶瓷2 种,其他2 种[2]。
利用现有的生物医学材料已开发应用的医用植入体、人工器官等近300 种,主要包括:起搏器、心脏瓣膜、人工关节、骨板、骨螺钉、缝线、牙种植体,以及药物和生物活性物质控释载体等。
近年来,西方国家在医学上消耗的高分子材料每年以10 %~20 %的速度增长[3 ] ,而国内也以20 %左右的速度迅速增长。
随着现代科学技术的发展,尤其是生物技术的重大突破,生物材料的应用将更加广泛,需求量也随之越来越大。
生物医用材料产业发展如此迅猛,主要动力来自于人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。
生物材料的研究与开发被许多国家列入高技术关键新材料发展计划,并迅速成为国际高技术制高点之一。
作为世界人口最多的国家,生物材料的市场潜力十分巨大。
据民政部门报告:我国现有的肢体不自由患者已超过1 500 万,其中肢残患者约800 万;由类风湿引发的大骨节病患者有数百万;冠心病患者已超过1 000 万;白内障盲人约500 万;牙缺损和牙缺失患者高达3 亿~ 4 亿人; 肝炎病毒携带者1. 2 亿;心血管病患者2 000 万;需计划生育的育龄妇女2 000 万;伴随人口老龄化(60 岁以上的老年人口已达1. 39 亿人,约占全国人口的10. 69 %) 的骨质疏松患者7 000 万;每年由于疾病、交通事故和运动创伤等造成的骨缺损和缺失患者人数近1 000 万人;需要进行颅颌面和胸部美容整形的人数有数千万人。
这还不包括数目庞大的各类软组织、血液和器官疾病患者人数[4]。
我国医用高分子材料研制和生产迅速发展,初具规模,已经成为一个新兴产业,总产值的增长率远高于国民经济平均发展速度。
可见,生物材料是一个巨大的产业,生物材料的不可缺少性,尤其是进口材料动辄上万元的价格决定了我国必须加强具有自主知识产权的生物材料的研究开发[5]。
2.2生物医用功能高分子材料分类生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。
2.21天然生物材料天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维[6]等。
这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。
自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。
例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。
甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。
它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。
甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。
降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。
比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。
根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。
2.22合成生物材料由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。
合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。
因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。
与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。
通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。
目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。
应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。
合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚一氨)酯心血管材料,从此进入了以分子工程研究为基础的发展时期。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段,其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。
2.3医用高分子材料的特殊要求医用高分子材料是要用在人身上的,必须对人体组织无害,所以对其要求十分严格,总体上可以概括为以下四个方面:1) 生物功能性:因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。
2) 生物相容性:可概括为材料和活体之间的相互关系,主要包括血液相容性和组织相容性。
组织相容性主要指无毒性,无致癌性,无热原反应,无免疫排斥反应,不破坏邻近组织等。
血液相容性一般指不引起凝血,不破坏红细胞,不破坏血小板,不改变血中蛋白,不扰乱电解质平衡。
3) 化学稳定性: 耐生物老化性或可生物降解性。
对于长期植入的医用高分子材料,生物稳定性要好;对于暂时植入的医用高分子材料,则要求在确定时间内降解为无毒的单体或片段,通过吸收、代谢过程排出体外。
4) 生产加工性:首先,严格控制用于合成医用高分子材料的原料纯度,不能带入有害物质,重金属含量不能超标;其次,材料加工助剂必须符合医用标准;第三,对于体内应用的高分子材料,生产环境应当具有符合标准的洁净级别; 第四,便于消毒灭菌(紫外灭菌、高压煮沸、环氧乙烷气体消毒和酒精消毒等)[7][8] 。
正因为对于医用高分子材料的要求严格,相关的研发周期一般较长,需要经过体外实验、动物实验、临床实验等不同阶段的试验,材料市场化需要经国家药品和医疗器械检验部门的批准,且报批程序复杂,费用高。
这也是生物材料的市场价格居高不下的一个重要原因。
3.医用高分子材料的主要类别和应用医用高分子材料涉及到多个学科,根据不同的角度医用高分子材料有不同的分类方法,尚无统一标准。
为了便于比较不同结构的生物材料对于各种治疗目的的适用性,按生物医学用途分类如下:3. 1 硬组织相容性高分子材料硬组织相容性高分子材料(如各种人工骨、人工关节、牙根等) 是医学临床上应用量很大的一类产品,涉及医学临床的骨科、颌面外科、口腔科、颅脑外科和整形外科等多个专科,往往要求具有与替代组织类似的机械性能,同时能够与周围组织结合在一起。
如牙科材料(蛀牙填补用树脂、假牙和人工牙根、人工齿冠材料和硅橡胶牙托软衬垫等) ;人造骨、关节材料聚甲基丙烯酸甲酯等。
随着生命科学、材料科学、医学临床的发展和人们生活水平的不断提高,此类材料具有越来越广阔的临床应用前景和巨大的经济效益。
3.2 软组织相容性高分子材料软组织相容性高分子材料主要用于软组织的替代与修复,如隆鼻丰胸材料、人工肌肉[9](硅橡胶和涤纶织物) 与韧带材料等。
这类材料往往要求具有适当的强度和弹性以及软组织相容性,在发挥其功能的同时,不对邻近软组织(如肌肉、肌腱、皮肤、皮下等) 产生不良影响,不引起严重的组织病变。
3.3 血液相容性高分子材料血液相容性高分子材料在医用高分子材料的应用方面,有相当多的器件必须与血液接触,例如:各种体外循环系统、介入治疗系统、人工血管(聚对苯二甲酸乙二酯) 和人工心瓣等人工脏器。
血液相容性高分子材料必须不引起凝血、溶血等生理反应,与活性组织有良好的互相适应性。
3.4 高分子药物和药物控释高分子材料高分子药物指带有高分子链的药物和具有药效的高分子,如:抗癌高分子药物(非靶向、靶向) 、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血) 、抗菌和抗病毒高分子药物(抗菌、抗病毒) 、抗辐射高分子药物和高分子止血剂等。
高分子材料制备药物控制释放制剂主要有两个目的:1) 为了使药物以最小的剂量在特定部位产生治疗药效;2) 优化药物释放速率以提高疗效,降低毒副作用。
高分子控制释放体系包括时间控制缓释体系(如康泰克等,理想情形为零级释放) 、部位控制缓释体系(靶向药物) 和脉冲释放方式(智能药物) 。
4 .医用高分子材料的发展及展望我国医用高分子材料的研究起步较早、发展较快。
目前约有50 多个单位从事这方面的研究,现有医用高分子材料60 多种,制品达400 余种,用于医疗的聚甲基丙烯酸甲酯每年达300 t 。
然而,我国医用高分子材料的研究目前仍然处于经验和半经验阶段[10] ,还没有能够建立在分子设计的基础上。
因此,应该以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。