当前位置:文档之家› 纳米材料的力学性能课件

纳米材料的力学性能课件


3
若取一微体积ΔV,假设单位体积内的界面组元面积为St,则ΔV内界面组元比
表面积为:
Vt Ct V St V
St

Ct

488m2
cm 3
5
纳米材料晶界结构及特点 纳米材料中晶界占有很大的体积分数,这是评定纳米材料
的一个重要参数。
f 3 (d ) : d 晶界的厚度,通常包括2~3个原子间距。 :晶粒的直径 f :晶界体积分数
9.0 18.0 42.6 80.5
晶界在常规粗晶材料中仅仅是一种面缺陷。 对纳米材料来说:晶界不仅仅是一种缺陷,更重要的是构成纳米材料 的一个组元,即晶界组元(Grain Boundary Component)。 已经成为纳米固体材料的基本构成之一,并且影响到纳米固体 材料所表现出的特殊性能!
晶界厚度与晶界体积分数的关系
纳米固体材料=颗粒组元+界面组元
4
纳米固体材料的界面组元
• 界面组元体积分数
假设纳米微粒的粒径d为5nm,界面平均厚度δ为1 nm,且微粒为球体,则界 面组元的体积分数Ct 为:
Ct

4 d 3 4 d 3
3
3
4d3

3d
d 3
d3

61 125
48.8%
晶界的原子结构-一直存在争论:
类气态模型
Gleiter于1987年提出
认为纳米微晶界 面内原子排列既非 长程有序,又非短 程有序,而是一种 类气态的,无序程 度很高的结构。
该模型与大量事实有出入,至1990年以来文献上不再引用该模型。 9
短程有序模型
认为纳米材料的界面排列是有序的,与粗晶结
16
图中晶界厚度为1nm,晶间区为晶界 和三叉晶界区之和。
左图表明,当晶粒小于2nm时,三叉晶 界的体积分数已超过界面的体积分数。由于 三叉晶界处的原子扩散更快,运动性更好。
因此,纳米材料中大量存在的三叉晶界 将对材料的性能产生很大的影响。
纳米固体材料中的三叉晶界
所谓三叉晶界,指三个或三个以上相邻晶粒 之间的交叉区域,也称旋错。
晶晶 Δ
计算表明:当晶粒直径从
100 nm减小到2 nm时,三叉
晶界体积分数增加3个数量
级,而晶界体积分数仅增加
晶晶
1个数量级。
晶晶
三叉晶界体积分数对晶
粒尺寸的敏感度远远大
于晶界体积分数。这就意味着三叉晶界对纳米 晶体材料的性能影响是非常大的。
纳米Pd薄膜的高分辨透射电镜图像
要用一种模型统一纳米材料 晶界的原子结构是十分困难的。 尽管如此,还是可以认为纳米 材料的晶界与普通粗晶的晶界 结构无本质上的区别。纳米材 料晶界的原子结构平面示意图 可用左图来表示,图中实心图 表示晶粒内的原子,空心图表 明晶界处的原子。
纳米材料晶界平面示意图
纳米晶界结构特点 尽管纳米晶的晶界原子结构与粗晶的无本质区别,然而
3.1纳米材料的力学性能
3.1.1纳米材料的晶界与缺陷
3.1.2纳米材料力学性能概述
3.1.3纳米金属的强度与塑性

纳米金属的强度

纳米金属的塑性
3.1.4纳米复合材料的力学性能
3.1.5纳米材料的蠕变与超塑性

纳米材料的蠕变

纳米材料的超塑性
3.1.1纳米材料的晶界及缺陷
纳米材料的晶界及缺陷
纳米固体材料是由颗粒或晶 粒尺寸为1-100nm的粒子凝 聚而成的三维块体。纳米固 体材料的基本构成是纳米微 粒加上它们之间的界面。
物理上的界面不只是指一个几何分界面,而 是指一个薄层,这种分界的表面(界面)具 有和它两边基体不同的特殊性质。因为物体 界面原子和内部原子受到的作用力不同,它 们的能量状态也就不一样,这是一切界面现 象存在的原因。
纳米固体材料的基本结构组成
纳米晶体材料=晶粒组元+晶界组元 纳米非晶材料=非晶组元+界面组元 纳米准晶材料=准晶组元+界面组元
界面缺陷态模型 其中心思想是界面包含大量缺陷,其中三
叉晶界对界面性质的影响起关键作用。
11
有人在同一个Pd试样中用高分辨率 透射电镜既观察到有序的界面, 如图中A、B晶粒之间的晶界; 也观察到原子排列十分混乱的界面, 如图中D、E晶粒之间的晶界。 因此,要用一种模型统一纳米材料 晶界的原子结构是十分困难的。
它们还具有以下不同于粗晶晶界结构的特点: 晶界具有大量未被原子占据的空间或过剩体积(Excess
Volume); 低的配位数和密度; 大的原子均方间距; 存在三叉晶界;
晶界相对配位数与原子间距的关系
在纳米晶材料的晶界上有大量的未 被原子占据的位置或空间
纳米晶晶界上的原子具有大的原 子均方间距和低的配位数。
构无区别。
但进一步研究表明,界面组元的原子排列的
有序化是局域性的,而且,这种有序排列是有
条件的,主要取决于界面的原子间距ra和颗粒大
小d,当ra≤ Nhomakorabead 2时,界面组元的原子排列是局域有序的;反之, 界面组元则为无序结构。
10
界面可变结构模型
也称结构特征分布模型。 强调界面结构的多样性,即纳米材料的界 面不是单一的、同样的结构,界面结构是多 种多样的,因此,不能用一种简单的模型概 括所有的界面组元的特征。
假设晶粒的平均尺寸为5nm,晶界的厚度为1nm,则由上式 可计算出晶界所占的体积分数为50%。
晶粒直径与晶界体积分数的关系
晶粒/nm 晶界厚度/nm 晶粒个数/2×2×2m3 晶界体积分数/%
2000 0.6 1 0.09
20
10
4
2
0.6 0.6
0.6 0.6
106 0.8×107 1.3×108 109
相同晶粒尺寸时,晶体结构 不同导致晶界厚度不同。 bcc结构晶界厚度:1nm左右 fcc结构晶界厚度:0.5nm左右
Bcc结构晶界体积分 数蒙特卡洛模拟曲线
fcc结构晶界体积分数 蒙特卡洛模拟曲线
1、对金属和合金纳米材料来说,其结构不同,使得晶界厚度不同。 2、对纳米复合陶瓷来说,合成方法不同,晶界厚度变化很大。
晶界原子配位数/单晶原子配位数=相对配位数 晶间原子间距越大,配位数越低。
纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动, 例如由8.3nm晶粒组成的Pd块体在室温时晶间原子热振动偏离点 阵位置平均为3.1±0.1%,而粗晶材料为2.3~2.7%。因此,纳米 晶晶界处的密度较普通粗晶晶界的密度有较明显的降低。
相关主题