当前位置:
文档之家› 第三章风力发电机的类型与结构
第三章风力发电机的类型与结构
水平轴及垂直轴风力发电机组
1.7按风力发电机的运行方式
独立运行风力发电机,风力发电机输出的电能经蓄电池蓄能, 再供用户使用。这种方式可供边远农村、牧区、海岛、边防哨 所等电网达不到的地区使用。一般单机容量在几百瓦到几kW。 并网运行风力发电机组,在风力资源丰富地区,按一定的排列 方式安装风力发电机组,称为风力发电场。发出的电能全部经 变电设备送到电网。这种方式是目前风力发电的主要方式。 风力同其它发电方式互补运行,风力—柴油互补方式运行,风 力—太阳能电池发电联合运行,风力—抽水蓄能发电联合运行 等。这种方式一般需配备蓄电池,以减少因风速变化导致的发 电量的突然变化所造成的影响,还可节约一次能源。
水平轴风力发电机:风轮轴线安装位置与水平夹 角不大于150度的风力机。可以是升力装置(升力 驱动风轮),也可以是阻力装置(阻力驱动风轮)。
垂直轴风力发电机:风轮轴线安装位置与水平面 垂直的风力机。在风向改变时,无需对风。在这 点上,相对水平轴风力机是一大优点。这使结构 简化,同时也减少了风轮对风时的陀螺力。
材料特 性
经济性
叶片材 料选择 要求
可靠性
回收再 利用性
可处理 性
物理属 性
叶片材料选择规则
良好的力学、热学及化学特性
高硬度、高强度、低密度
使用寿命长、良好的耐腐蚀性 要易于生产加工、要价格合理 加工助剂的价格要尽量低廉并且操作时不污染环境
叶片的主要材料特性
纤维增强复合材料 玻璃纤维复合材料 碳纤维复合材料 玻璃钢复合材料
风力发电机组的传动装置包括增速器与联轴器等。
2.8 控制系统及附属部件
2.8.1机舱
风力机常年 在野外运转 狂风暴雨 的袭击
为了使塔架上方 的主要设备不受 风沙的直接侵害
尘砂磨损和 盐雾侵蚀
罩壳——机 舱
2.8.2 机头座
它用来支撑塔架上方的所有装置及附属部件 它牢固与否将直接关系到风力机的安危与寿命 由于微、小型风力机塔架上方的设备重量轻。一般是由 钢板焊接而成, 即根据设计要求在底板上焊上加强肋 中、大型风力机的机头座要复杂一些,它通常由以纵梁、 横梁为主,再辅以台板、腹板、肋板等焊接而成 焊接质量要高。台板面要刨平,安装孔的位置要精确
轮毂有固定式和铰链式两种
主轴
主轴也称为低速轴,安装在风轮和齿轮箱之间。 前端通过螺栓与轮毂刚性连接,后端与齿轮箱低速连 接,承力大而且复杂。
轴向 力 剪切 力 径向 力
受力 形式
弯矩 转矩
风机每经历一次起动和停机,主轴所受的各种 力,都将经历一次循环
因此会产生循环疲劳
主轴有较高的综合机械性
2.2 齿轮箱
自然界的风速经常变化。风轮的转速随风速的增 大而变快,发电机的输出电压、频率、功率也增加; 当风轮的转速超过额定值时,有可能影响机组的使 用寿命,甚至造成设备的毁坏。为使风轮能以一定 的转速稳定地工作,风力发电机组上设有调速装置。 调速装置是在风速大于设计额定风速时才起作 用,因此又被称为限速装置。当风速增至停机风速 时,调速装置能使风轮顺桨(风向与风轮旋转平面平 行)停机。
变桨距风力发电机:变桨距机组叶片可绕叶片中心轴旋转 ,使叶片攻角可在一定范围内(一般0-90度)调节变化。
性能比定桨距提高很多,但结构复杂,多用于大型机组。 主动失速风力发电机:发电机达到额定功率后,主动失速 调节是使桨距角向减小的方向转过一个角度。 目的使攻角相应增大,以限制风能利用率。
1.5根据叶轮转速是否恒定分类
2.8.3 回转体
回转体(转盘)是塔架与机头座的连接部 件,通常由固定套、回转圈以及位于它 们之间的轴承组成。固定套销定在塔架 上部,回转圈与机头座相连,通过它们 之间的轴承和对风装置相连, 在风向变 化时,机头便能水平地回转,使风轮迎 风工作。
大、中型风力机的回转体常借用塔式吊车上的回 转机构。 小型风力机的回转体通常是在上、下各设一组轴承 ,可采用圆锥滚子轴承。也可以上面用向心球轴承承 受径向载荷。下面用推力轴承来承受机头的全部重量 。
2 水平轴风力发电机结构
大型风电机组基本结构 1-叶片;2-轮毂;3-机舱;4-叶轮轴与主轴连接;5-主轴;6-齿 轮箱;7-刹车机构;8-联轴器;9-发电机;10-散热器;11-冷却风扇 ;12-风速仪和风向标;13-控制系统;14-液压系统;15-偏航驱动; 16-偏航轴承;17-机舱盖;18-塔架;19、变桨距部分
1.2根据动力学划分
阻力型风力发电机:在逆风方向装有一个阻力装 置,当风吹向阻力装置时推动阻力装置旋转,旋 转能转化为电能。
风力发电机不能产生高于风速很多的转速;风轮转轴的输 出扭矩很大。常用于扬水、拉磨等动力。
升力型风力发电机:风能吹过转子时对转子产生 升力带动转子转动。
由于升力的作用,风轮圆周速度达到风速几十倍,现代风 力发电机组几乎全是此类型。
N N CP NV D2 V 3 8
(3 )
2 3 N D V C P 8
式中 CP 的值为0.2~0.5。
(4 )
由式(3)得知:
风轮功率与风轮直径的平方成正比 风轮功率与风速的立方成正比
风轮功率与风轮的叶片数目无直接关系
风轮功率与风轮功率系数成正比
因此,当风轮大小、工作风速一定时,应尽可能提 高CP 值,以增大风轮功率。这是从事风能开发利 用的科技人员追求的主要目标之一。
1 1 2 3 NV ( mV AV 1) 2 2
若风轮的直径为D,则
2 1 1 D 3 3 2 ( 2 ) NV AV V D V 3 2 2 4 8 这些风能不可能全部被风轮捕获。
风轮捕获风能并将之转换成机械能,再由风轮 轴输出的功率N(称之为风轮功率)。它与 NV 之比,称为风轮功率系数(或风能利用系数), 用 CP 表示,即
功率较大的风力发电机组,应用电磁 制动器和液压制动器,当采用电磁制动器 时,需要有外电源;当采用液压制动器时 ,除了需要外电源,还需要油泵,电磁阀 ,液压油缸和管路等。
2.8.5 控制系统
控制系统的功能
控制系统利用DSP微机处理机,在正常运行
玻璃钢叶片
用于叶片制造的材料一般有木材、金属,如
钢和铝,以及玻璃钢。由于叶片的木材一般要选 用优质木材,如桦木、核桃木等,材料来源困难、 取材率低、造价高、维修不便。钢金属材料制造, 又存在加工复杂、工艺装备多、生产周期长、产
品不耐腐蚀等一系列问题。因此,目前在国内已
很少选用木材或金属制造叶片,大多数采用玻璃 钢。
恒速风力发电机 恒速风力发电机的设计简单可靠,造价低,维 护量小,可直接并网;缺点是气动效率低,结 构负荷高。
变速风力发电机 变速风力发电机的气动效率高,机械应力小, 功率波动小,成本效率高,支撑结构轻;缺点 是功率对电压降敏感,电气设备的价格较高, 维护量大。
1.6按照风力机旋转的主轴方向
单管拉线 式 衍架拉 线式塔 架
塔架的 基本形 式
锥筒式塔 架
衍架式 塔架
微型风力机 小,中型风 力机
中,大小型 风力机
大型风力机
2.6 增速器
由于风轮的转速低而发电机的转速高,为匹 配发电机,要在低速的风轮轴和高速的发电 机轴之间接一个增速器,增速器就是使转速 提高的变速器。增速器的增速比是发电机额 定转速和风轮额定转速比。
叶片及叶片材料
叶片是风力机的关键部件,其良好的设计、可靠的质 量和优越的性能是保证机组正常稳定运行的决定因素
叶片材料经历了木制叶片 布蒙皮叶片 钢梁玻璃纤维蒙皮叶片 铝合金叶片 复合材料叶片 新型复合材料叶片
。
叶片发展趋势
风力机风轮叶片向大功率、长叶片方向发展 风力机风轮叶片不断的更新设计,以有好的气动性能 碳纤维复合材料在风力机风轮叶片上的应用不断扩大 在风力机叶片上大量采用碳纤维复合材料,但是又取 决于碳纤维的价格
微型风力机的回转体不宜采用滚动轴承,而采用青 铜加工的滑动轴承。这是为了防止机头对瞬时变化的 风向过于敏感而导致风轮的频繁回转。
2.8.4 制动装置
制动装置是使风力发电机停止运转的装置(也称 刹车系统)。对于微型和小型风力发电机,可采用 如图所示的刹车机构。
在中型和大型风力发电机组中,有采用 叶尖气动刹车和机械式刹车组成的制动系 统。
第三章 风力发电机的
类型和结构
1 风力发电机的种类
1.1按风力发电机的功率分类
①微型风力发电机,其额定功率为50~1000W。
②小型风力发电机,其额定功率为1.0~10.0kW。
③中型风力发电机,其额定功率为10.0~100.0kW。
④大型风力发电机,其额定功率大于100kW。
小型及大型风力发电机组
1.3根据转子受力风向划分
顺风型风力发电机:发电机在转子前面 ,转子自然顺风受力产生能量。 逆风型风力发电机:发电机在转子后面 ,转子由外力调节,始终保持迎风受力 从而产生能量。
1.4根据桨叶接受风能的功率调节方式
定桨距(被动失速型)风力发电机:定桨距(失速型)的 桨叶与轮毂的连接是固定的。 风速变化时,桨叶的迎风角不能随之变化。定桨距(失速 型)机组结构简单、性能可靠。
2.4 发电机
发电机是将由风轮轴传来的机械能转变成电能的 设备。
直流发电机
永磁发电机
同步交流发 电机
异步交流发 电机
2.5 塔架
塔架的功能是支撑位于空中的风力发电系统,塔 架与基础相连接,承受风力发电系统运行引起的各 种载荷,同时传递这些载荷到基础,使整个风力发 电机组能稳定可靠地运行。
风力机调速装置调速原理
减少风轮迎风面积
改变叶片翼型攻角值
• 侧翼装置
• 偏心装置 • 缩小风轮圆形迎风 面积
• 配重(飞球)与弹簧配 合装置
• 叶片重量与弹簧配 合装置