当前位置:
文档之家› 第四章-1 电介质材料 (基础知识)
第四章-1 电介质材料 (基础知识)
C0
C0
ε0 S d
对于气体、非极性电介质及结构高度对称或完全无序的介质, 有效电场与外电场的关系为:
r 1
n 0Ee 0E
Ee
r 2
3
E
这样的有效电场称为洛伦兹(Lorentz)有效电场,将其代入εr公式:
r - 1 n 0 r 2 3 0
Q0 Q Q0 Q'
E0
U
U E0 d
U
E' E
Q'
Q C0 0 U
C
Q Q0 Q' Q' C0 U U U
定义电容器充以电介质时的电容量C与真空时的电容量C0的比值为该电介质
的相对介电常数:
r
C C0 0
D D E r E 0
介电常数反映了介质极化能力的大小,介电常数值越大,极化能力越强。
常用电介质材料的相对介电常数
真空 1.00000 空气 1.00059 石蜡 2.0~2.5 玻璃 3.80 石英 4.27~4.34 乙醇 26.4 水 80.1
聚乙烯 2.26
聚四氟乙烯 2.11
聚氯乙烯 4.55
环氧树脂 3.6~4.1
+q 原子核
电子云 -q
E0 0
电子位移极化模型图
E0
电子位移极化产生的感应偶极矩: μe αe Ee
αe 为电子极化率: αe
40 r 3
(电子位移极化率的数量级为10-40 F.m2)
电子极化率与原子半径的立方成正比,电子轨道半径 r 越大,电子离原子核 越远,与原子核之间的吸引力越弱,越容易发生极化。
2. 极化的微观机制
电偶极子:
+q
L
-q
电偶极矩 u qL
将分子等效为电偶极子,根据其电偶极矩 u分子 的不同,分为两类: (1)无极分子:正负电荷重心重合, u分子 0 + + + + + + + + + + + + + + + +
E0+-Fra bibliotek感应偶极矩
位移极化
例如, He、H2、N2、 CO2 、CH4等。
U
S d
Q'
r - 1 0 E
P n 0Ee
εr
Q0 Q ' Q' 1 Q0 Q0
Q0 U
n 0Ee r 1 0E
提高电介质的介电常数:
提高单位体积内的极化粒子数n0; 选取极化率 大的粒子组成电介质; 增强作用于极化粒子上的有效电场Ee。
极性介质 — 组成介质的分子具有极性或正负离子的中心不重合,其本身就具有
固有偶极矩;在没有外电场时,热运动使固有偶极矩混乱取向,偶极矩的矢量和 为零;有外电场时,偶极子沿电场方向取向几率增加,偶极矩的矢量和不再为零, 电介质对外表现出感应宏观偶极矩:取向极化
3. 表面感应电荷和退极化场
由于介质的极化,在介质表面出现符号相反的感应电荷,在介质内形成
天然橡胶 2.6~2.9
酚醛树脂 5.1~8.6
云母 5
MgSiO3 6.1
金红石(TiO2) 110
钛酸钡 2000
Pb(Mg1/3Nb2/3)O3 104
巨介电常数材料—CaCu3Ti4O12:~105
5. 介质极化强度和极化率
为了描述电介质在外场中的极化情况,引入极化强度矢量 P ,它等于单位 体积内感生偶极矩的矢量和:
称为克 — 莫极化方程,是在采用洛伦兹有效电场的情况下,联系电介质极化 宏观参数与微观参数的关系式。
7. 电介质极化的类型
电子位移极化、离子位移极化、
偶极子转向极化、离子松弛极化、空间电荷极化、自发极化
1)电子位移极化 电介质中的原子、分子和离子等任何粒子,在电场的作用下,粒子中的 电子云相对于原子核发生位移,而感生一个沿电场方向的感应偶极矩。
第四章
电介质材料
4-1 电介质物理基础知识 4-2 电容器介质材料 4-3 压电材料和热释电材料
4-1 电介质物理基础知识
4-1-1 电介质及其极化
4-1-2 电介质的介质损耗 4-1-3 电介质的电导和击穿
4-1-4 电介质材料的非电性能
电介质材料的四个基本参数:
ζ 介电常数(ε)、损耗角正切(tanδ)、电导率( )、抗电强度( Eb )
(2)有极分子: 正负电荷重心不重合,u分子 0
+
E0
+ + -
-
固有偶极矩
+ 取向极化
例如,H2O、NH3、CO、SO2、H2S、CH3OH 等。
非极性介质 — 在电场作用下,正负电荷在微观尺度作偏离平衡位置的相对位移,
正负电荷相对位移的方向相反,在相距一定距离之后,产生感应偶极矩;电介质 整体来看,就形成了感应宏观偶极矩:位移极化
4-1-1 电介质及其极化
1. 电介质及极化的定义
导体、半导体:
自由电荷
长程迁移
绝缘体:
束缚电荷
4-1-1 电介质及其极化
1. 电介质及极化的定义
导体、半导体:
自由电荷
长程迁移
绝缘体:
束缚电荷
极化
极化:在电场作用下,在电介质表面出现束缚电荷(极化电荷)的现象。 电介质:以极化方式传递、储存或记录外电场作用和影响的物质。
与外电场方向相反的退极化场。
图1 极化使电介质表面出现感应束缚电荷: 图2 表面感应电荷形成退极化场:
Q'
E0 E0 E0 :外电场
E'
E
E' :退极化场 介质中的总场强:E E0 E'
介质的极化能力越强,表面感应电荷越多,退极化场越强。
4、极化能力的表征 ——介电常数
P lim
若介质中的电场是均匀的,则有:
i
V
V 0
单位为:C/m2
V μ 若单位体积中有n0个极化粒子,各极化粒子偶极矩的平均值为 ,则有:
对于线性极化, μ 与电场强度成正比,有:
P
i
P n0 μ
Ee :作用在极化粒子(原子、分子或离子)上的局域电场,称为有效电场;
μ E e
:极化粒子的极化率,是表征微观粒子极化性质的微观参数。
P n 0Ee
6. 电介质极化的宏观参数和微观参数的关系
平板型电容器的极片面积为S,极片间距为d,均匀
极化时,整个电介质总的感应偶极矩: μ Q' d 极化强度: Q' d Q' P Sd S S 1 U r 0 r - 1Q 0 r - 1UC 0 d S S S