当前位置:文档之家› Simulink机械振动仿真简例分析

Simulink机械振动仿真简例分析


1.单自由度无阻尼自由振动
运行仿真,查看示波器显示的结果
曲 线 不 光 滑 ?
1.单自由度无阻尼自由振动
打开仿真参数对话框 Ctrl+E 修改最大步长为0.01
1.单自由度无阻尼自由振动
再次运行,曲线明显光滑了许多
1.单自由度无阻尼自由振动
• 用到的模块:
积分模块,将输入信号经过数值 积分,在输出端输出相应结果。 增益模块,在输入信号基础上乘 以一个特定数据,然后输出。 示波器模块,将输入信号输入到 示波器显示出来。
据此在Simulink中画出框图
5.单自由度有阻尼+正弦激励
• 参数设置: 令k=4,m=1,c=0.2 • 初始状态: 初始速度为0,位移为0.05 • 在框图中: 分别修改对应模块的数值
5.单自由度有阻尼+正弦激励
Hale Waihona Puke • 响应趋于稳态的过程5.单自由度有阻尼+正弦激励
示波器输出为质量块的位移信号
• 参数设置:k=100N/m, m=1kg →n=10rad/s • sin wave参数:Amplitude 1; Frequency 8,10,12 • 初始状态:①x0=1, v0=0→=90; ②x0=0, v0=1→=0; ③ x0=1, v0=10→=45; ④ x0=1, v0=−10→=135; ⑤ x0=0, v0= −1→=180 Sine Wave XY Graph • XY Graph参数 1 1 s s x-min -2; x-max 2; Integrator Integrator1 Gain Scope y-min -2; y-max 2
4.衰减振荡的阻尼比的估计
• 参数:k=100,m=10, c=2 • 初始条件:x0=1, v0=0 • 初始振幅为1,约7个周期时衰减 为0.25,对数减幅: =(ln4)/70.099 阻尼比/20.032 • 理论值=0.5c(km)−0.5 0.032
5.单自由度有阻尼+正弦激励
椭圆方程——与两信号间的 相位差有关,特别当φ =90° , 图像是正椭圆。
2.简谐波形的里沙茹图形分析
• 利用示波器上的里沙茹图进行频 率分析: X轴=已知简谐信号(可由信号发 生器提供) Y轴=待分析简谐信号 改变X轴信号频率→里沙茹图形成 为稳定椭圆→信号发生器输出频 率=待测信号频率
2.简谐波形的里沙茹图形分析
单自由度有阻尼 系统简图如右图 所示: 根据牛顿定律列 出运动微分方程
mx cx kx f (t )
5.单自由度有阻尼+正弦激励
微分方程变形为 令激励
f (t ) c k x x x m m m
f (t ) 2sin(2t / 3)
2sin(2t / 3) c k x x 则方程变为 x m m m
• 同频简谐信号的里沙茹图
x X m sin t x y x y 2 2 cos sin y Ym sin t X Y X Y m m m m
2 2
-10
2.简谐波形的里沙茹图形分析
• 仿真结果示例
3.单自由度有阻尼自由振动
单自由度有阻尼 系统简图如右图 所示: 根据牛顿定律列 出运动微分方程
mx cx kx 0
3.单自由度有阻尼自由振动
k c 微分方程变形为 x x x m m 据此在Simulink中画出框图
dan_zu_2
建立微分方程要点:
① 描述系统运动的坐标系原点取为静 平衡位置时质量所在位置 ② 在质量沿坐标正向有一位移的情况 下考察质量的受力情况
1.单自由度无阻尼自由振动
微分方程变形为
x
kx m
据此在Simulink中画出框图
dan_wuzu_1
1.单自由度无阻尼自由振动
• 参数设置: 令k=100,m=10, • 初始状态: 初始速度为0,位移为1 • 在框图中: 修改乘法器的值为-10 修改Integrator1的Initial condation 为1(双击修改)
Gain c 0.2
1 Sine Wave Add Gain 1/m
1 s Integrator
1 s Integrator1 Scope
Gain1 k 4
dan_zu_ji_3
5.单自由度有阻尼+正弦激励
程序可以有很多种,只要最终满 足所列数学方程就行
dan_zu_ji_4
5.单自由度有阻尼+正弦激励
Simulink振动仿真实验
1.单自由度无阻尼自由振动
如图所示的单自 由度无阻尼振动 的模型,即为弹 簧振子。 在零时刻给一个 向右的位移信号 ,求小球的振动 曲线。
1.单自由度无阻尼自由振动
单自由度系统简 图如右图所示:
根据牛顿定律列 出运动微分方程
mx kx 0
1.单自由度无阻尼自由振动
3.单自由度有阻尼自由振动
• 参数设置: 令k=100,m=10,c=10 • 初始状态: 初始速度为0,位移为1 • 在框图中: 分别修改对应的常数值
3.单自由度有阻尼自由振动
运行仿真,查看示波器显示的结果
3.单自由度有阻尼自由振动
• 用到的模块:
叉除模块,对数据进行相乘相除 运算,双击可添加、修改符号。 相加模块,对输入进行相加运算 ,双击可添加、修改符号。 常数模块,产生不变常数,双击 设置值的大小。
程序可以有很多种,只要最终满 足所列数学方程就行
dan_zu_ji_5
5.单自由度有阻尼+正弦激励
仿真结果都一样
5.单自由度有阻尼+正弦激励
为了更好的对比输入输出信号, 可以增加示波器通道数
dan_zu_ji_6
5.单自由度有阻尼+正弦激励
Scope1输出结果为
2.简谐波形的里沙茹图形分析
• 里沙茹原理 :在示波器的x轴和y轴上 分别加上简谐振动信号,只要两信号 频率之比ωx:ωy是正有理数,示波器上 便可显示出一个稳定的合成运动轨迹 图形;并且,若图形与y轴的交点数为 m,与x轴的交点数为n,则其频率比为 ωx : ωy=m : n
2.简谐波形的里沙茹图形分析
相关主题