换热器设计手册
(2) 沉浸式蛇管换热器
◎ 结构:将金属管子绕成各种形状,沉浸在液体中。 ◎ 优点:结构简单,便于防腐,能承受高压。 ◎ 缺点:管外流体的湍流程度低,表面传热系数较小。管 内易除垢。 ◎强化传热方法:可安装搅拌器。
蛇 管 的 形 状
(3) 喷淋式换热器
直管
水槽
喷淋式冷却器
◎ 结构:将换热管成排地固定于支架上,热流体在管内流动, 冷却水由管上方的喷淋。 ◎ 优点:湍流程度高,传热效果好;冷却水在喷林中气化,携 带热量,降低冷却水温度;便于检修和清洗。 ◎ 缺点:喷淋不易均匀,杂质易进入冷却水。 ◎应用范围:多用于冷却管内的热流体。
管程 管程 管程 壳程
壳程 壳程
(b) 流速的选择 流速↓,表面传热系数↓,污垢热阻↑,流体阻力↓;
◆
◆ 流速↑,表面传热系数↑,污垢热阻↓,流体阻力↑。
管程和壳程都需要选择适宜的流速 管程 一般流体 易结垢液体 气体 0.5~3 >1 5~30 壳程 0.2~1.5 >0.5 3~15
对于液体,一般粘度越大,要求流速越大
(c) 流动方式的选择
◆对于同样的进、出口条件,传热量相同,
◆管程
A逆<A并;
或壳程↑,表面传热系数↑,但同时流动阻力↑,
△tm ↓,应权衡确定。
单管程——逆流
200 160
多管程
100
60 110 200 160 160 60 100
60 200
110
100
(d) 换热管规格和排列的选择 换热管规格越小 单位体积传热面积越大 容易结垢、赌塞, 阻力大, 25 2.5,19 2, 25 2, 38 2.5等 制造、检修不便
壳程不易机械清洗;
适用: * 壳程流体不易结垢或容易化学清洗; * 壳体与传热管壁温度之差小于50C,否则加膨胀节。
带膨胀节的固定管板换热器
ቤተ መጻሕፍቲ ባይዱ)浮头式换热器 一端可以沿轴向自由浮动
特点:消除了温差应力、便于清洗和检修; 结构复杂、成本高; 适用:应用广泛。
c)U形管式换热器
结构:
特点:具有温度补偿作用;
单程: 多程: ◆ 多管程:封头内设置分程隔板
单管程→多管程。
◆ 多壳程: 相当于单壳程串联,传热面积↑。
双管程固定管板换热器
传热面积:
A双 A单 d o Ln
S单
流通截面积:
4
di n
2
1 S 双 S单 2
说明:管程数↑,流通截面积↓,管内流速↑,hi ↑,强化传热。
折流挡板 作用:提高壳程流体湍动程度(Re>100 湍流),ho,强化传热。 冲刷沉积物,减小污垢热阻;
A 选择匹配物流: B 选择流程
C 算出平均传热温差 D 根据经验估计总传热系数K估 计算传热面积A估 E 选取管程适宜管径、流速,根据A估, 确定管数、管长及管程数。
F 确定管子排列方式,选取管心距,计算壳体内径
正三角形排列
正方形排列
壳径的圆整
G 选取折流板
以400为基数,100或者50为进级档
4.7.1 间壁式换热器的类型
(1) 夹套式换热器
搅拌器
◎ 结构:在容器外壁安装夹 套制成。 ◎ 优点:结构简单。 ◎ 缺点:传热面受容器壁面 限制,传热系数小。
◎应用范围:主要用于反应 过程的加热或冷却。 ◎强化传热方法:
物料
釜
加热蒸汽
釜内安 装搅拌器,
加螺旋隔板, 在釜内安装蛇管。
物料
冷凝水
夹套式换热器
圆缺通常取25% 确定折流板间距,计算折流板数 H 选取进出口接管直径
I 计算管、壳程阻力 计算管、壳程流速和阻力,判断是否合理。
●J 核算热流量
求出总传系数K计,并与估算时所取用的传热系数K估进行比较。 如果相差较多,应重新估算。
一般应使裕度为20%左右。 裕度的计算式为:
AP Ao H 100% Ao
说明:
1 3 po ( ) B
(3)管壳式换热器的设计和选用的计算步骤 任务: 已知某物流流量、初始温度加热(或者冷却)至某一温度,
需要:确定加热(或者冷却)物流和换热设备 A 选择匹配物流: 根据工艺物流的初始温度、目标温度和热负荷
优先选择工艺物流 尽量选择低品位的公用工程 热量恒算方程 算出热负荷、匹配物流的目标温度或者流量
对壳体起支撑作用。
代价:壳体阻力↑,系统动力消耗↑。 安装:上下安装,常用; 左右安装,排液不畅时采用。 常用形式:弓形,圆盘形。
弓形
圆盘形
a)固定管板式换热器 固定管板式
浮头式
U形管式 优点:* 结构简单,成本低; 局限:
管、壳温度不同,产生热应力,当Δt>50℃时,管弯
曲、断裂或管板变形。
(4)套管式换热器
外 管 内 管
套管式换热器
◎ 结构:将两种直径大小不同的直管装成同心套管,并可用U 形肘管把管段串联起来,每一段直管称作一程。 ◎ 优点:表面传热系数大;逆流流动,平均温差最大;结构简 单;能承受高压。 ◎ 缺点:占地面极大;耗材量大;易泄漏。 ◎应用范围:流量不大,粘度较大,传热面积不多,压强较高
管程不易清洗。 适用:可用于高温高压,适用于管程为洁净而不易结垢的流体。
4.7.2 列管式换热器的设计和选用
(1)列管式换热器设计和选用应考虑的问题 (a)选择流程:哪一个物流走管程,哪一个物流走壳程
一 般 经 验 原 则
流体有结垢 腐蚀性 压力高的高低 饱和蒸汽 ,需要冷却的流体
流量小而粘度大的流体 表面传热系数大的流体
换热管规格:
管长选取:有利于清洗和选材
1.5m、2m、3m、4.5m、6m、9m
L 一般情况下: 4~6 D
管子在管板上的排列:
正三角形排列
正方形排列
正方形排列
正三角形排列、正方形排列两种 正三角形排列优点:结构紧凑 管外湍流程度高,表面传热系数大
正方角形排列优点: 易于检修、清洗
(e) 折流挡板 可大幅度提高管外表面传热系数 考察折流板的参数:形式、缺口大小、折流板间距
4.7.5 换热器网络综合
要确定具有最小的设备投资费用和操作费用的换热网络,
并满足把每一过程物流由初始温度达到指定的目标温度。
换热网络综合方法: 夹点技术 —— Linnhoff 调优方法 —— Motard
数学规划法 —— Grossmann
●④ 计算传热面积并求裕度
计算示例
4.7.3 换热器的传热强化途径
Φ KAt m
强化方法:提高K、A或Δ tm
目的:传热面积↓ ,使设备费用降低。 (1)提高K值
do b do 1 1 do 1 Rdi Rdo K o hi d i di d m ho
① 降低污垢热阻;
非工艺物流:流量↑ 流速↑ 工艺物流:流通截面积↓ 管程:单管程→双(多)管程 b)制造人工粗造表面 促进边界层分离,减薄层流底层,强化传热。 c)加设扰流元件 管内装入麻花铁、螺旋圈或金属丝片; 壳程:折流挡板数目↑
增强湍动,破坏层流底层。
◆ 有相变传热 冷凝 :1)采用滴状冷凝, 2)及时排放不冷凝气体,
如采用:
不同异形管 ; 开槽及加翅片 ;
折流形式;
多孔、高效传热面。
波纹管式传热管
纵向翅片管
横向翅片管
螺旋槽纹管
缩放管
翅片管的截面
管壳式换热器的缺点 流通截面积相同的情况下,圆形通道表面积最小, 即相同流速下,圆管表面积最小 圆管之间不能紧密排列,单位体积换热器的传 热面小,材料消耗大。
4.7.4 其他类型换热器
圆缺形折流挡板的缺口大小的选择
圆缺形折流挡板的间距的选择 间距太大,表面传热系数下降, 间距太小,阻力增大,不便制造、检修 挡板间距:一般取壳体内径的0.2~1.0倍 我国系列标准: 固定管板:100、150、200、300、450、600、700 浮头式:100、150、200、250、300、350、450、600
(2)流体通过换热器时阻力的计算 ① 管程阻力
管程总阻力:pt (pi pr ) F t Ns N p
l u 2 每程直管阻力: pi d 2
Ft 结构校正系数,
每程回弯阻力: pr 3
u 2
2
25 2.5 Ft 1.4 19 2 Ft 1.5
缺点: 允许操作压力、操作温度比较低
处理量不大
易渗漏
② 螺旋板式换热器
④ 板壳式换热器
与列管式换热器的区别:板束→管束
板壳式换热器结构示意图
优点:传热系数大、结构紧凑、坚固,能承受很高的温度和压力。
缺点:制造工艺复杂、焊接要求高。
(2)空气冷却器
空 气
物料入口
翅片
物料出口
空 气
卧 式 空 冷 器
② 提高表面传热系数
* 若hi<<ho,提高h小(hi)的一侧;
* 两侧h相近,应同时提高两侧流体的h。
提高表面传热系数h的方法
◆ 无相变传热
a)提高管内流速
hi Cu 0.8di 0.2
hi u 0.8,
hi di 0.2
如果hi ho,则K hi u 0.8
优点:总传热系数↑,传热面积↓,设备投资费↓ 代价:流动阻力↑,动力消耗↑,操作费用↑。 经济优化:选择适宜流速,使总费用最低。
4.7 换热器
分类: ① 按用途---加热器、冷却器、冷凝器、再沸器、蒸发器等。
②
按冷热流体热量交换的原理和方式
直接接触式:冷、热直接混合。 蓄热式:
冷流体 热流体
th 热 Φ 流 体 th, tc,
w
Φ