当前位置:文档之家› KM1型空间辐射制冷器环境模拟设备研制.

KM1型空间辐射制冷器环境模拟设备研制.

KM1型空间辐射制冷器环境模拟设备研制 X陆燕逄伟王少臣马吉祥(兰州物理研究所兰州市 730000摘要研制了一台空间辐射制冷器热模拟试验专用的清洁无油环境模拟设备。

着重论述了其主要结构、性能指标及设计思路和原理 , 给出了辐射制冷器热模拟试验结果和在轨测试结果。

主题词环境模拟辐射制冷热模拟试验低温泵1 引言宇宙空间是个冷黑和真空环境 , 其温度低于 4K, 吸收率为 1, 能 100%吸收来自航天器各表面的辐射。

空间辐射制冷器就是利用这样的环境通过自身的特殊结构 , 将其内部的热量由黑体辐射板辐射给空间 , 同时尽可能减少接受到的航天器和轨道的寄生热载 , 从而达到被动制冷的目的。

辐射制冷器具有重量轻、无运动部件、寿命长、无振动、极少消耗航天器宝贵能源等突出优点 , 是卫星红外遥感系统首选的制冷手段。

为保证辐射制冷器在轨工作性能 , 在地面要做大量的试验 , 其中最重要的是热模拟试验 , 检测辐射制冷器的热性能以验证其设计的正确性、工艺的合理性和机构的可靠性。

空间辐射制冷器自 60年代开始发展至今 , 其热模拟试验都在中大型的空间环境模拟设备中进行 , 模拟冷黑背景采用氦流程或氖流程 , 其优点是冷背景的制冷量大 , 但运转费用十分昂贵 , 并且系统操作复杂。

我所 1982年开始 W 型辐射制冷器预研 , 首次提出以小型低温制冷机为冷背景冷源的技术设想 , 在 <500的小型环境模拟设备中得以实现 [1]。

根据辐射制冷器研制要求 , <500环境模拟设备不但真空室的容积和冷背景的冷量不能满足试验要求 , 而且还存在结构上的不足 , 为此在技术条件成熟的基础上 , 又研制了一台适应今后辐射制冷器发展需要的直径为 <1000的 KM1型环境模拟设备 , 其主要特点是清洁无油、操作简便、运转费用低廉。

2 性能指标空间辐射制冷器环境模拟设备的性能指标 , 主要是根据辐射制冷器的轨道冷黑真空环境 2000年第 4期低温工程 No 14 2000总第 116期 CRYOGENICS Sum No 1116,和热模拟试验要求 , 经热模拟试验误差理论分析和热分析后提出的 [1, 2]。

211系统真空度确定根据真空模拟腔内两个温度不等的表面之间存在残余气体导热的原理 , 真空室的压力抽到某一极限时 , 气体在换热表面之间传导的热量可以忽略不计。

在低压下 (一般在 113@ 10-1Pa 以下 , 气体的平均分子自由程比结构尺寸要大 , 表面之间单位面积上气体传导的功率为5=K Ap (T 2-T 1 (1 式中 A 0为两换热表面的适应系数 , 与两表面的面积有关 , 在 A 1/A 2[1时取为 1, p 为压力 , T 1为内表面温度 , T 2为外表面温度 , K 为常数 , 对平行板、同心球面、同轴圆柱面 :K =(8P MT 1(2式中 C =C p /C v 为比热比 , R 为气体常数 , M 为气体分子的摩尔质量 , T 为测压点的温度 , 对空气 K =01016。

因此 (1 式简化为5=116@10-2p (T 2-T 1 (3 根据辐射制冷器各级温度 , 以及一级和二级辐射体的辐射能力 , 如控制级间残余气体的导热占辐射能力的 1%以内 , 则要求系统压力低于 113@10-3Pa 。

212冷背景温度的确定宇宙空间的温度为 (3~4 K, 根据航天器模拟试验误差理论 , 因热沉温度引起的模拟误差为D 1= T 4h T 4ST V(4式中 D 1为因热沉温度引起的模拟误差 , T h 为热沉表面的温度 , T S 为宇宙空间的温度 , T V 为航天器温度。

据此对辐射制冷器的模拟冷黑背景温度 T h 进行近似估算 , 若要求辐射制冷器二级温度 100K, 保证冷黑背景温度引起的误差 D 1<1%, 则冷背景温度要低于30K 。

213冷背景表面有效发射率的确定宇宙空间是个无限大的热沉 , 航天器辐射出的能量被冷黑的宇宙空间全部吸收 , 冷黑空间的吸收率为 1。

模拟设备中的冷黑背景面积有限 , 而且表面有效发射率(即吸收率小于 1, 由此引起的误差为D 2=A 1 A 2 (a-1 (5式中 D 2为模拟冷黑背景的有效发射率和面积引起的误差 , A 1为辐射制冷器二级冷块的面积 , A 2为模拟冷黑背景的面积 , E a 为冷黑背景的有效发射率。

若 A 2/A 1\10, E a =0195则 D 2[015%; 若 A 2/A 1\10, E a =0198则 D 2[012%; 若A 2/ A 1\5, E a =0198则 D 2[014%。

由此可见冷黑背景的有效发射率 E a 越大 , 面积比 A 2/A 1越大 , 则由此引起的模拟误差就越小。

214冷黑背景冷量需求的确定8低温工程 2000年制冷器的热辐射、活性炭的吸附热以及室温度真空容器壁的辐射漏热。

21411 辐射制冷器的热辐射空间辐射制冷器不断向冷黑空间辐射热量 , 以到达被动制冷的目的 , 因此辐射制冷器在降温后并维持所需制冷温度下 , 辐射制冷器的辐射热量为Q r =A h E h R T 4h +A d E d R T 4d +A p E p R T 4p(6 式中 R 为斯蒂芬 -玻尔兹曼常数 , A h , A d , A p 分别为辐射制冷器外壳辐射板、一级辐射器和二级辐射器的面积 , E h , E d , E p 分别为相应表面的发射率。

21412 吸附热冷背景背面粘有活性炭 , 在冷背景降至最低温度后 , 能起到一定的抽气作用 , 由此产生一定的吸附热 :Q a =g a M a(7 式中 g a 为吸附剂的比吸附热 , M a 为被吸附气体的总量。

21413 真空容器壁对冷背景的辐射漏热虽然采用了液氮热沉对冷背景进行热屏蔽 , 大大降低了冷背景的辐射漏热 , 但还存在有一定的漏热量 :Q L =A t R (T 4r -T 4t t +r -1(8式中 A t 为冷背景正对液氮热沉的面积 , E t , E r 分别为冷背景背面和热沉内表面的发射率 , T r , T t 分别为冷背景和热沉的温度。

空间辐射制冷器环境模拟设备的主要技术性能指标为真空度 :空载优于 7@10-5Pa;有载优于 3@10-4Pa;辐射制冷器烘烤出气时优于 7@10-3Pa 。

模拟冷黑背景 :温度低于 30K;温度均匀度优于 ? 2K;有效发射率 \0198;有效制冷量 \20W 。

热沉温度 :[100K 。

3 总体结构辐射制冷器空间环境模拟设备总体结构简图如图 1所示 , 主要由 6部分组成 :真空室、冷黑背景、热沉、试验车、真空系统和电控数据采集系统。

311 真空室考虑今后辐射制冷器研制工作 , 真空室直径 <1000mm, 长度 1000m m, 可进行较大规模的辐射制冷器试验。

根据真空容器设计计算 , 容器筒体采用 315mm 厚的不锈钢板卷制 , 两侧封头设计成可开关式 , 以便于辐射制冷器的装拆。

312 模拟冷黑背景 , 9第 4期 KM 1型空间辐射制冷器环境模拟设备研制图 1 辐射制冷器空间环境模拟设备示意图11低温泵 ; 21热沉 ; 31辐射制冷器 ; 41活性炭 ; 51冷背景制冷机 ; 61真空室 ; 71液氮槽 ; 81冷背景底板 ;91冷背景侧板 ; 101试验车 ; 111插板阀 ; 121测度引线出口 ; 131真空计 ; 141电控及数据采集系统 ;151机械泵 ; 161电磁阀 ; 171液氮冷阱 ; 181高真空阀 ; 191低温泵制冷机 ; 201氦压缩机。

关键部件 , 根据其性能指标要求 , 有载温度低于 30K, 表面有效发射率 \0198, 温度由两台美国 C TI 公司的 G -M 制冷机保证 , 表面有效发射率通过在无氧铜基板上粘铝蜂窝后喷涂高发射率黑漆得以实现 , 底板为带折边的梯形板 , 两侧根据辐射制冷器结构 , 采用三角形侧板 , 辐射制冷器开口全部包围在整个冷背景中形成光学密闭系统。

冷背景底板背面粘贴颗粒适中的活性炭 , 当其降温至 (20~30 K 时 , 起到一定的抽气作用 , 进一步提高辐射制冷器热模拟试验中降温阶段系统的真空度。

313 热沉热沉筒体无氧铜卷制而成 , 筒体内壁均匀焊接等距离的紫铜管列阵 , 每根紫铜管与上下液氮槽连通。

在试验过程中 , 液氮由下液氮槽进入 , 通过连通管升至上液氮槽 , 在上液氮槽设置液面指示计和液面自动控制仪 , 以实现液氮的自动加注。

筒体内表面喷涂高发射率黑漆 , 整个热沉由不锈钢丝绳悬吊在真空容器上 , 热沉两侧用无氧铜板封闭 , 通过螺钉与热沉筒体连接 , 连接处垫铟片 , 以减小接触热阻 , 保证侧门的温度。

314 真空系统抽气系统设计主要根据辐射制冷器热模拟试验中加热出气阶段的真空度要求考虑的 , 两台 2XZ -8机械泵预抽真空 , 机械泵前设有液氮冷阱 , 防止机械泵的油蒸气污染系统 , 主抽泵 510低温工程 2000年315 电控及数据采集系统本环境模拟系统中 , 共有两台 2XZ -8机械泵 , 三台低温制冷机 , 以及高真空插板阀 , 液氮液位自动控制仪等电气设备 , 其电路控制系统统一由电气控制操纵台实现 , 辐射制冷器热模拟试验中系统的真空度及辐射制冷器、冷背景和热沉各点的温度 , 通过复合真空计和多路温度巡回检测仪 , 用微机进行采集和处理。

316 试验车辐射制冷器安装固定在试验车上后 , 通过试验车固定在热沉导轨上。

试验车采用不锈钢管材料制成 , 设置了升降机构 , 便于调节辐射制冷器位置 , 保证其与冷黑背景具有很好的耦合关系。

图 2 低温泵的结构简图 11障板 ; 21钟罩 ; 31屏蔽罩 ; 41过渡接头 ; 51翼片 ; 61制冷机。

4 低温泵的设计本空间环境设备主要用于辐射制冷器的热模拟试验 , 要求系统清洁无油 , 采用制冷机低温泵作主抽泵 ,简化了操作。

其总体结构如图 2所示 , 障板和屏蔽罩与制冷机的一级冷头相连 , 主要用于屏蔽室温气体和被抽容器的热辐射 , 抽除系统中 H 2O 和 CO 2等沸点较高的气体 , 同时预冷如 Ar, N 2, O 2, H 2, He 等低沸点气体。

吸附面积要尽量大 , 一般采用表面粘贴活性炭的翼片焊接在过渡筒体上组成吸附器 , 吸附器与制冷机的二级冷头相连 , 主要抽除系统中放出的 H 2, He 等不可凝性气体 , 在翼片吸附面上端设有钟罩用于冷凝Ar, O 2, O 2等可凝性气体。

411 屏蔽罩和障板的设计屏蔽罩采用无氧铜板 , 外表面抛光 , 内表面喷涂高发射率黑漆 , 障板采用单层百叶窗结构。

相关主题