钢结构加固原则
结构或构件加固是一项复杂的工作,要考虑的因素很多。
加固方法应从施工方便、不影响生产、经济合理、效果好等方面来选择,一般原则如下:
(1)加固应尽可能做到不停产或少停产,因停产的损失往往是加固费用的几倍或几十倍。
能否在负荷下不停产加固,取决于结构的应力应变状态。
一般构件的内应力小于钢材设计强度的80%,且构件损坏变形等不是太严重时,可采用负荷不停产加固方法。
(2)结构加固方案要便于制作、施工,便于检查。
(3)结构制造组装应尽量在生产区外进行。
(4)连接加固应尽可能采用高强螺栓或焊接。
采用高强螺栓加固时,应验算钻孔截面削弱后的承载能力;采用焊接加固时,实际荷载产生的原有杆件应力最好在钢材设计强度60%以下,极限不得超过80%,否则应采取相应的措施才能施焊。
二、钢结构加固的主要方法有:减轻荷载、改变计算图形、加大原结构构件截面和连接强度、阻止裂纹扩展等。
当有成熟经验时,也可采用其他的加固方法。
经鉴定需要加固的钢结构,根据损害范围一般分为局部加固和全面加固。
局部加固是对某承载能力不足的杆件或连接节点处进行加固,有增加杆件截面法、减小杆件自由长度法和连接节点加固法。
全面加固是对整体结构进行加固,有不改变结构静力计算图形加固法和改变结构静力计算图形加固法两类。
增加或加强支承体系,也是对结构体系加固的有效方法。
增加原有构件截面的加固方法是最费料最费工的方法(但往往是可行的方法);改变计算简图的方法最有效且多种多样,其费用也大大下降。
确定加固方案前,应搜集下列资料:(1)原有结构的竣工图(包括更改图)及验收记录。
(2)原有钢材材质报告复印件或现场材质检验报告。
(3)原有结构构件制作、安装验收记录。
(4)原有结构设计计算书。
(5)结构或构件破损情况检查报告。
(6)现有实际荷载和加固后新增加荷载的数据。
三、、钢结构损害的主要因素有:1)由荷载变化,超期服役,规范和规程改变导致结构承载力不足;2)构件由于各种意外产生变形、扭曲、伤残、凹陷等,致使构件截面削弱,杆件翘曲,连接开裂等;3)温差作用下引起构件或连接变形、开裂和翘曲;4)由于化学物质的侵蚀而产生腐蚀以及电化学腐蚀致使钢结构构件截面削弱;5)其它包括设计、生产、施工中的失误及服役期中的违规使用和操作等。
钢结构的加固技术措施主要有三种:1)截面补强法:在局部或沿构件全长以钢材补强,连成整体使之共同受力;2)改变计算简图:增设附加支承,调整荷载分布情况,降低内力水平,对超静定结构支座进行强迫位移,降低应力峰值;3)预应力拉索法:利用高强拉索加固结构薄弱环节或提高结构整体承载力、刚度和稳度。
以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度
大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和仓库等大跨度结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
四、钢材或钢结构的脆性断裂是指应力低于钢材抗拉强度或屈服强度情况下发生突然断裂的破坏。
钢结构尤其是焊接结构,由于钢材、加工制造、焊接等质量和构造上的原因,往往存在类似于裂纹性的缺陷。
脆性断裂大多是因这些缺陷发展以致裂纹失稳扩展而发生的,当裂纹缓慢扩展到一定程度后, 断裂即以极高速度扩展,脆断前无任何预兆而突然发生,破坏。
钢结构脆性断裂破坏事故往往是多种不利因素综合影响的结果,主要是以下几方面:
(1 ) 钢材质量差、厚度大:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等;较厚的钢材辊轧次数较少,材质差、韧性低,可能存在较多的冶金缺陷。
(2) 结构或构件构造不合理:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。
(3) 制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重;冷加工引起的应变硬化和随后出现的应变时效使钢材变脆。
(4) 结构受有较大动力荷载或反复荷载作用:但荷载在结构上作用速度很快时(如吊车行进时由于轨缝处高差而造成对吊车梁的冲击作用和地震作用等),材料的应力-应变特性就要发生很大的改变。
随着加荷速度增大,屈服点将提高而韧性降低。
特别是和缺陷、应力集中、低温等因素同时作用时,材料的脆性将显著增加。
(5)在较低环境温度下工作:当温度从常温开始下降肘,材料的缺口韧性将随之降低,材料逐渐变脆。
这种性质称为低温冷脆。
不同的钢种,向脆性转化的温度并不相同。
同一种材料,也会由于缺口形状的尖锐程度不同,而在不同温度下发生脆性断裂。
所以,这里所说的"低温"并没有困定的界限。
为了确定缺口韧性随温度变化的关系,目前都采用冲击韧性试验。
图1为碳素钢恰贝V形缺口试件冲击能量与温度的关系曲线。
显而易见,随着温度的降低, Cv能量值迅下降,材料将由塑性破坏转变为脆性破坏。
同时可见,钢材由塑性破坏到脆性破坏的转变是在一个温度区间内完成的,此温度区T1-T2称为转变温度区。
在转变温度区内,曲线的转折点〈最陡点〉所对应的温度T0称为转变温度。
如果把低于T0的完全脆性破坏的最高温度Tl作为钢结构的脆断设计温度,即可保证钢结构低温工作的安全。
这一脆断设计温度是根据大量使用经验和实验资料统计分析确定的。
对于一般钢结构,取对应于Cv=2.07公斤-米,的温度。
为了保证钢结构的安全使用,应保证其使用温度高于T1。
脆性断裂是由于局部拉应力高峰所造成的脆断破坏
疲劳现象是钢材在反复荷载或由此引起的脉动应力作用下,由于缺陷或疵点处局部微细裂纹的形成和发展直到最后发生脆性断裂的一种进行性破坏过程。
钢材的疲劳破坏必要条件存在拉应力应力反复产生塑性变形
疲劳破坏与脆性断裂破坏的区别:都为脆性断裂;疲劳破坏存在一个稳定发展期,承受反复荷载,断口成波纹状
、现在对超高层还没有明确的规范,所以只能按照GB50205-2001执行
钢结构需做检测:
1、钢板及焊接材料复验;
2、高强螺栓预拉力、扭矩系数复验;
3、摩擦面抗滑移系数复验;
4、网架节点承载力试验;
5、焊缝探伤等;
另设计要求的需作检测,有关情况详见钢结构工程施工质量验收规范GB50205-2001中附录G中内容。
要到有资质的检测单位去检测。
测应变片看是否合格[采用万用表]--对钢筋除绣,打磨【采用砂布】--贴应变片【502胶水或别的】--测应变片绝缘【万用表】--如绝缘没问题,贴接线片【一个小集成块,要固定好】--焊外接线【焊接笔】--作防水,防潮【针对应变片,502覆盖】--测外接线【万用表】--封外接线头--接测试仪器--仪器调零--加载---读数--打印。
目前钢结构的无损监测应用呈上升趋势,对于钢结构检测来讲有最为开始的超声检测法,磁粉检测法,涡流检测法,红外线检测法等,目前结构检测技术集中研究的话题是应用于结构整体检测的无需已知完好结构数据的结构动力学无损检测方法.目前的结构动力学检测法一般分为能量法,柔度法,模态识别法,利用神经网络的识别方法等.
目前对于钢结构的检测工作来说,实际检测中多数还是使用超生、磁粉、射线检测等方法,详细的你可以看《无损检测》、《无损探伤》等期刊,还有一些关于钢结构现场检测的书籍。
如果要进行这方面的研究,现在热门的是关于采用结构动力学、振动、信号采集与分析的等多门学科综合在一起的结构动力学检测方法。
研究这方面的人很多,如同济的李国强,清华的董聪等等。
李国强编写的《结构工程动力学检测理论》一书可以一看。