当前位置:文档之家› 木塑复合材料的研究进展

木塑复合材料的研究进展

木塑复合材料的研究进展现阶段木塑复合材料的基体主要有PP、PE、PVC、PS以及ABS等,从目前市场上的产品来看,主要是PE基的木塑复合材料制品,而 PP 基和PVC基的木塑复合材料也占一定的比例。

目前,木塑复合材料的研究也以这三种塑料基体为基础,但许多研究者已经开始进行新型木塑复合材料的研发。

1. PE基木塑复合材料聚乙烯(PE)是一种无毒、质轻、具有优异的耐化学腐蚀性和电绝缘性的热塑性聚合物,广泛应用于电器工业、化学工业、食品工业、机器制造业和农业等方面。

PE 树脂的产量自20世纪60年代中期以来一直高居世界塑料产量的首位,常见的品种有高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)以及线形低密度聚乙烯(LLDPE),性能各有不同,其中HDPE在木塑复合材料的应用最为广泛。

Cui J.等[1]将丙烯酰胺-甲醛-尿素三元共聚物(AMFU)用于增容植物纤维/HDPE复合材料体系,结果表明AMFU对植物纤维/HDPE复合体系有良好的增容作用,使得复合材料的静态和动态力学性能明显改善,复合材料的吸水率降低。

该研究给出了一种增容木塑复合材料的新途径。

Tan H.等[2]研究了MAPE对椰壳纤维/LLDPE复合材料体系力学性能的影响,并用扫描电子显微镜观察了复合材料冲击断面的形貌。

研究发现,加入MAPE后,复合材料的弯曲强度和冲击强度均高于未加界面改性剂的;SEM照片显示,加入MAPE的复合材料有更好的界面粘接,椰壳纤维和LLDPE树脂基体间的相容性得到了改善,这也是复合材料刚性和韧性提高的主要原因。

2. PP基木塑复合材料聚丙烯(PP)树脂按结构不同,可以分为等规聚丙烯、间规聚丙烯和无规聚丙烯三类,目前作为塑料使用的PP一般均为等规结构的。

PP的电绝缘性和耐化学腐蚀性优良,尤其是力学性能和耐热性在通用塑料中是最好的,但其低温脆性大,耐老化性不好。

由PP的价格相对低廉,目前其在木塑复合材料中的应用也很广泛。

为了克服PP基木塑复合材料在加工过程出现的缺陷问题,Hristov V.等[3]将热塑性硅胶弹性体(TPSE)引入 PP/木粉复合材料体系加以研究。

结果发现,在木粉含量为50wt%,未添加TPSE和MAPP的情况下,挤出物表面粗糙,且有严重的撕裂现象。

当加入1wt%TPSE后,上述现象得到缓解甚至消失,提高挤出速度可以获得更加光滑的表面。

另外还发现MAPP的加入也能降低表面缺陷的程度。

Danyadi L.等[4]采用两种不同分子量和接枝率的MAPP作为界面改性剂,制备了木粉填充量从0-70wt%变化的PP/木粉复合材料。

通过对复合材料力学性能和扫描电镜等测试表明,复合材料的刚性随着木粉含量的增加而提高,并且与MAPP的加入量和接枝率无关。

但MAPP的种类对材料的拉伸强度影响很大,高分子量和低接枝率的MAPP对于提高复合材料的拉伸性能和冲击性能更为有效。

Kokta B. V.等[5]系统研究了聚丙烯接枝马来酸酐(MAPP)、过氧化二异丙苯(DCP)和顺丁胶异氰酸盐(PBNCO)的用量对PP/杨木粉复合材料力学性能的影响,并确定了二者的最优含量使得木塑复合材料冲击强度得到维持或提高的同时避免了拉伸强度的降低。

此时,复合材料的拉伸强度由纯PP的32MPa提高到60MPa,杨氏模量由700MPa升高到约1700MPa,冲击强度也由52J/m2提高至 60-62J/m2,在这些性能增加的同时只有屈服应变从纯PP的11%降到了复合材料的8%。

3.PVC基木塑复合材料PVC具有不易燃烧、抗化学腐蚀、耐磨性好等优点。

近些年来,PVC基木塑复合材料呈现快速增长的势头,通过添加热稳定剂、加工助剂、抗冲改性剂、润滑剂和颜料等制备的复合材料大部分用作门窗、地板、栏杆等。

Shah B. L.等[6]采用甲壳素和壳聚糖作为新型相容剂,研究了其对 PVC/木粉复合材料的性能影响。

实验表明,添加了质量分数为0.5%壳聚糖和6.67%甲壳素后,PVC/木粉复合材料的弯曲强度提高了约 20%,储能模量提高了约74%。

壳聚糖作为自然界中仅次于纤维素的第二大生物资源,在 PVC/木粉复合材料中的应用前景广阔。

Guffey V. O.等[7]采用氯化聚乙烯(CPE)作为界面相容剂增容PVC/木粉复合材料。

研究表明CPE通过包覆在填料表面,增加填料与PVC基体的粘结性能,从而提高复合材料的冲击性能;而且CPE能改善不同树脂基体间的界面相容性,可以作回收塑料组份间的增容剂。

通过实验室和中试实验发现,CPE的加入能显著改善PVC/木粉复合材料的加工性能,从而在提高挤出速度的同时保证了制品表面的美观性。

4. ABS基木塑复合材料ABS 树脂是苯乙烯系列三元共聚物,它是由苯乙烯(St)和丙烯腈(AN)、丁二烯(Bd)三种单体接枝共聚而成的一种热塑性通用塑料,也有文献将其归类为工程塑料。

ABS 是一种典型的橡胶增韧塑料体系,为二相结构,树脂相为连续相,橡胶相为分散相,构成所谓"海岛"结构,树脂相和橡胶相的界面是接枝层,这种结构使树脂的性能发生了明显的变化,尤其是冲击性能。

ABS 是无定形聚合物,无明显的熔点,熔融流动温度不太高,随所含三种单体比例的不同,在 160-190℃范围即具有充分的流动性,且热稳定性好,在约高于 285℃时才出现分解现象,加工温度范围较宽,适合制备木塑复合材料。

同时ABS存在腈键等极性基团,可能与极性的植物纤维有较好的相容性。

Chotirat L.等[8]首先研究了木粉含量对木粉/ABS 木塑复合材料力学性能的影响,并采用两种有机硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KBM503)和 N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(KBM603)进行增容,经改性后的木粉/ABS 复合材料的强度和模量提高,但断裂伸长率有所降低。

Yeh S. K.等[9]在双螺杆挤出机上,在配方比例相同条件下,对比研究了废旧ABS/木纤维复合材料和纯 ABS/木纤维复合材料的物理机械性能。

研究发现两者的拉伸性能、冲击强度和断裂伸长率能都相差不大,且均高于相同条件下的 PP/木纤维复合材料。

扫描电子显微镜分析表明,在未加入任何界面改性剂的情况下,木纤维与 ABS 之间结合良好,没有明显空隙,他们认为这是由于 ABS 表面为弱极性,与木纤维表面能够很好的相融合。

5. 新型木塑复合材料的研究进展近年来木塑复合材料的研究和开发应用有了长足的发展,对木塑复合材料的需求也越来越大,传统的 PE、PP、PVC 基木塑复合材料已不能满足市场需求,急需开发新的基体制备木塑复合材料,因此开发新型木塑复合材料也成为现在的研究热点。

基于这一前提,一些新的树脂被研究用于木塑复合材料的制备,如聚丁烯(PB)、聚乳酸(PLA)以及一些高分子合金等等。

Afrifah K. A.等[10]应用注射成型技术制备了聚丁烯(PB)/木粉复合材料,并对比其与PE 及 PP 基的木塑复合材料的力学性能。

PB/木粉复合材料在强度和韧性上都要优于 PE及 PP 基的木塑复合材料,且其加工性能、界面结合也更好,非常适合用于制备对韧性有特殊要求的木塑复合材料。

Corradini E.等[11]在HAAKE流变仪中,以乙烯/丙烯酸丁酯/甲基丙烯酸缩水甘油酯(EBGMA)和乙烯-甲基丙烯酸酯(EMA)作为界面改性剂,制备了回收聚对苯二甲酸乙二醇酯(PETr)/蔗渣复合材料,研究结果显示EBGMA有较好的增容效果,但拉伸强度降低。

Bledzki A. K.等[12]研究了人造纤维素、黄麻纤维和麻焦纤维填充的PLA和3-羟基丁酸酯与3-羟基戊酸酯共聚物(PHBV)基复合材料,并与以PP为基体的复合材料进行对比,SEM 分析表明增强纤维与PLA及PHBV基体的结合情况与PP有很大不同。

还有一些研究者采用高分子合金作为基体来制备木塑复合材料,其优点是通过合金的方式降低工程塑料的熔点,从而达到将工程塑料引入木塑复合材料的目的。

Lei Y.等[13]将木粉加入HDPE/PET合金中制备了新型木塑复合材料,在复合体系中PET以微纤的形式存在,加入25wt%的PET可明显提高HDPE的力学性能;加入40wt%的木粉后复合材料的力学性能和HDPE的结晶度都得到了提高,且对 PET 微纤的形态和尺寸无明显影响,而采用回收PET增强回收 HDPE/木粉体系时也获得了较好的效果。

Liu H.等[14]用两步法制备了 HPDE/尼龙-6(PA6)/木粉复合材料,结果显示加入30%木粉的HPDE/PA6 基复合材料力学性能优于HPDE基复合材料,并且有较低的蠕变。

KhanR. A.等[15]通过模压法制备了 LLDPE/PVC/黄麻纤维复合材料,在黄麻纤维的添加量为 50wt%时,考察了 PVC 用量变化对复合材料的力学性能、吸水率和热稳定性的影响,发现随着PVC用量的增加,复合材料的力学性能和热稳定性明显提高,而吸水率下降。

6.木塑复合材料加工性能的研究进展加工困难是木塑复合材料生产中存在的一个重要问题。

由于植物纤维的大量填充,复合材料熔体的流动性降低,不仅影响制品的外观,而且对加工设备造成一定的磨损,这也是制约木塑复合材料大规模生产的重要因素。

影响木塑复合材料体系加工流变性能的主要因素:木质纤维填料的填充量、种类、颗粒大小、界面改性剂、润滑剂以及加工过程中的工艺控制(温度、螺杆转速)等[16]。

Li T. Q.等[17]使用毛细管流变仪研究了木粉的用量、粒径对木粉/HDPE 复合材料熔体流变行为的影响。

通过研究发现:复合材料熔体的表观粘度随着木粉含量的增加而增大,这是因为木粉不熔融且木粉颗粒的存在阻碍了聚合物分子链的运动;在木粉填充量为60%时,剪切粘度和拉伸粘度几乎不受木粉颗粒尺寸的影响,剪切粘度仅随颗粒尺寸的减小有轻微增加的趋势;他们还对木粉填充HDPE 复合材料的壁面滑移现象进行了研究,采用Mooney分析方法对木粉/HDPE复合材料熔体在毛细管中的剪切流动进行了校正,结果表明木份的种类和添加量对壁面滑移均有影响。

Li T. Q.等[18]还采用毛细管流变仪研究了木粉/HDPE复合材料的稳态流动,发现含有松木的复合材料不如含有枫木的复合材料表观剪切粘度随木粉含量增加改变得敏感,他们将此归因于松木粉中含有一定量的脂肪酸化合物,在挤出过程中起到了类似润滑剂的作用。

Hristov V.等[19-20]研究发现随着木粉的含量增加,木粉/HDPE 复合材料熔体的幂律指数降低,线性粘弹性区缩短,第一法向应力差减小,剪切变稀行为增强,随着剪切速率增加,壁面滑移速度急剧增加,导致了木粉填充量为 60%-70%的木粉/HDPE复合材料熔体类柱塞流动的出现,表面撕裂现象完全消除,挤出物表面变得更光滑。

相关主题