当前位置:文档之家› 电子配料秤(数电课设)报告

电子配料秤(数电课设)报告

前言在现代工业生产中,电子配料秤有着非常广泛的应用,它适于用计算机技术控制生产过程,采用高精度的传感器,响应速度快、分辨率高;电子配料秤结构简单、质量轻、安装调试使用方便;它没有机械磨损,故稳定性好;传感器的密封性良好,适合在恶劣环境下工作;采用电子配料秤还可以提高劳动生产率、减轻劳动强度、保证饲料产品的质量、降低生产成本,以及促进企业管理水平的提高。

因此,我国现代企业均采用以电子配料秤为核心的配料计量系统。

电子配料秤原本的定义是一种预先给定质量比例,对被称物中的几种物质进行配料计量的衡器。

但由于自身能力的限制和课程设计的要求,我们着重处理其称重显示及自动控制加料功能。

本次设计的主要思路是通过称重传感器将重物的质量信号转换成电信号在电路中进行传递,经过模数转换,数量校准并与预置数比较达到自动控制加料的目的。

我们所设计的电子配料秤可用于工厂车间的重物称量,配有一个可控制加料阀门,阀门打开均匀加料,电子配料秤开始称量,达到设定重量后自动停止加料。

称量围是10KG到500KG的物体,精度为0.1KG本小组成员在认真分析本次实验设计要求后,初步确定了设计方向以及所需的各元件,再通过图书馆和网络收集到大量相关元件的详细资料,对多种方案进行综合分析选取。

确定整体模块后虽由小组成员分工完成,期间也多次交流,请教老师,学长指导,同学帮助,数次修改方案,调试仿真并检验后才汇总得到该篇论文。

由于本小组成员能力有限,论文略显稚嫩,但确实我们两周奋斗的结果,若有疏漏或者错误之处请直接指出,我们乐于接受批评和意见!页脚目录摘要 (5)关键字 (5)技术要求 (5)正文第一章系统概述 (6)1.1 设计前期准备 (6)1.1.1设计要求分析 (6)1.1.2 设计目的及方向的明确 (6)1.2 设计方案论证 (7)1.2.1 设计方案论证 (7)1.3 设计方案的确立 (7)1.4总体设计方案框图及分析 (7)页脚第二章单元电路设计 (8)2.1 稳压直流恒流电源模块 (8)2.1.1集成恒流源模块原理 (8)2.1.2 方案论证 (8)2.1.3工作过程及集成恒流源模块总图 (9)2.2 传感器模块 (11)2.2.1 传感器基本工作原理 (11)2.2.2 承重传感器总误差 (12)2.2.3 传感器电路图 (12)2.2.4 传感器输出电压与总量的对应关系 (13)2.3 数模(A/D)转换模块 (13)2.3.1 A/D转换器原理 (14)2.3.2 A/D接线图 (14)2.3.3 对应关系 (14)2. 4 称重显示模块 (15)2.5 预置数设计 (16)2.5.1 十进制输入键盘 (16)2.5.2 输入编码 (16)2.5.3 LED输出十进制 (16)页脚2.5.4 预置数模块总图 (17)2.6 比较控制模块 (17)2.6.1 比较部分 (17)2.6.2 可控开关设计 (19)第三章系统综述(附总设计图) (20)结束语 (22)参考文献 (23)鸣 (23)元器件明细表 (24)收获与体会 (25)指导教师评语 (26)页脚电子配料秤摘要:在现代工业生产中,电子配料秤有着非常广泛的应用,它适于用计算机技术控制生产过程,采用高精度的传感器,响应速度快、分辨率高。

我们所设计的电子配料秤可用于工厂车间的重物称量,配有一个可控制加料阀门,阀门打开均匀加料,电子配料秤开始称量,达到设定重量后自动停止加料。

称量围是10KG到500KG的物体,精度为0.1KG。

我们的设计共分六大个的模块:集成恒流源模块(两个,分别提供5V和6.5V直流电压)、称重传感模块、模数(A / D)转换模块、13位2进制-10进制转换校准模块、预置数模块、比较模块。

本电路应用压敏电阻构成秤重电桥来采集电压的微小变化(mV级),输入到A/D转换芯片ADC16,将输入的模拟电压信号转换成数字信号再校准为重量用LED输出,然后把LED得输入端接到比较模块与预置数(重量)进行比较得到一个高低电平接到继电器控制加料阀门的开关,从而达到自动控制加料的要求。

关键字:集成恒流源称重传感器数模(A/D)转换比较器 2-10进制转换 LED显示页脚设计要求:1. 配料称重围10Kg~500Kg;2. 配料设定重量连续可调,到达设定重量自动停止加料;3. 配料重量的自动显示;4. 配料精度优于±1%。

一、系统综述1.1设计前期准备1.11设计要求分析依任务书要求,配料秤重围是10kg到500kg,称量围比较广,要求精度优于±1%,那么LED灯需要四个分别输出百位、十位、个位、十分位,外加一个小数点。

要求重量连续可调,达到预定重量自动停止加料,为满足这一要求,我们的预置数要可直接输入并显示出来,LED部分与称量显示对应,还需要一个比较模块,比较结果输出来控制加料阀门开关。

1.12设计目的及设计方向的明确页脚根据设计要求,我们设计的电子秤需要称量精确到到0.1Kg;应现实生产车间环境要求,只有220V交流电压,而我们许多环节需要5V直流电压,于是我们需要取220V交流电压做一个直流稳压电源输出5V直流电压;预置数输入需要直观和人性化,我们要做到输入十进制数然后转换为8421BCD码LED同步输出。

比较模块的输出要控制加料阀门,所以还需要一个继电器。

1.2设计方案论证1.21方案一:把力敏电阻串联到全桥的一个桥臂去,重量增加导致全桥出来的电压信号变化,把电压信号通过运算放大器放大,输入到ICL7107再接LED显示,放大输出的电压信号再接去ADC16进行数模转换,受精度要求限制,经计算需要取ADC16的13位,即输出13位2进制数,用ROM或者单片机转换成4位10进制数,再与预置数在比较环节(四片级联的74LS58)重进行比较,得到一个高电平或者低电平控制继电器从而控制加料阀门的开闭。

1.22方案二:把力敏电阻串联到全桥的一个桥臂去,重量增加导致全桥出来的电压信号变化,把电压信号通过运算放大器放大(需不需要运放,计算后再定),输入ADC16进行数模转换,受精度要求限制,经计算需要取ADC16的13位,即输出13位2进制数,用ROM或者单片机或其他方式转换成4位10进制数,再与预置数在比较环节(四片级联的74LS58)重进行比较,得到一个高电平或者低电平控制继电器从而控制加料阀门的开闭。

称重显示环节是将ROM或者单片机转换后的4位10进制数直接接LED输出。

1.23方案三:把力敏电阻串联到全桥的一个桥臂去,所选用的力敏电阻和全桥满足增加0.05KG电压输出改变0.1MV,输入ADC16进行数模转换,受精度要求限制,经计算需要取ADC16的13位,并且通过改变ADC16的比较电压VREF让其满足VIN每增加0.1MV输出加01,这样每增加0.1kg电压改变0.2MV,ADC16输出的最低位D0,从0到1再到0,提供一个下降沿,送去74LS160N的CP口,这样,74LS160N的计多少数就是有多少个0.1KG。

从而省去了13位2进制数转换成4位10进制数和校准的复杂环节。

1.3设计方案的确立方案一的优点是可控制性好,所用的ROM,ICL7107,集成度高,用起来也方便,问题是multisim找不到这些芯片,仿真不了。

页脚而且课设要用我们所学的数字电路知识,运用简单数字芯片进行设计,单片机需要编写程序进行数据处理,故我们不采用。

方案二设计合理,但是再2-10进制转换上有很大问题,在MULTISIM里去构建一个我们所需的ROM型号对我们来说实在很难,用门电路实现过于复杂,若是用加法器和减法器组合实行转化,电路也不简单,所以次方法我们不采用。

方案三相对前两种方案要简单许多,我们对重量-电压量-二进制数之间的对应关系做文章,使整个电路简单化,在不影响电子配料秤功能的前提下设计出了一个在我们能力围的电路。

所以我们决定采用方案三。

1.4总体设计方案框图及分析二、单元电路设计页脚2.1 稳压直流恒流电源设计要使整个电路能正常工作是离不开直流电源的供电的,在我们的这个电路中称重传感模块、模数(A / D)转换模块、13位2进制-10进制转换校准模块、预置数模块、比较模块都需要提供直流电压,其中模数(A / D )转换模块需要6.5V 直流电压,其他的模块需要5.0V 直流电压。

获得直流电源的方法很多,如干电池,蓄电池,直流发电机等,在实际中一般采用的是对交流电源经过变换而得的直流电源。

2.1.1稳压直流电源的组成及原理小功率直流稳压电源是由电源变压器、整流、滤波和稳压电路4部分组成的,其组成框图如图2.1.1所示。

工作的过程是:先由电源变压器将电网电源提供的220V 交流电压变换成所需要的电压值,然后通过整流电路将交流电压转变成单方向脉动的直流电压。

单方向脉动的直流电压中有较大的波纹,需要经过滤波器加以滤除,才能得到比较平滑的直流电压。

但是该直流电压还会随着电网电压的波动(一般为 10%左右的波动)、负载和温度的变化而变化,为此还应有稳压电路来维持输出直流电压恒定。

电路的整流和稳压过程如图2.1.2₀ ○图2.1.1 直流稳压电路组成框图u0 t 0 t 0 t 0 t 0 t图2.1.2 整流与稳压过程2.1.2方案论证方案一:单相半波整流电路:单相半波整流简单,使用器件少,它只对交流电的一半波形整流,只要横轴上面的半波或者只要下面的半波。

但由于只利用了交流电的一半波形,所以整流效率不高,而且整流电压的脉动较大,无滤波电路时,整流电压的直流分量较小,Vo=0.45Vi,变压器的利用率低。

方案二:单相全波整流电路:使用的整流器件较半波整流时多一倍,整流电压脉动较小,比半波整流小一半。

无滤波电路时的输出电压Vo=0.9Vi,变压器的利用率比半波整流时高。

变压器二次绕组需中心抽头。

整流器件所承受的反向电压较高。

方案三:单相桥式整流电路:使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰值,变压器利用率较全波整流电路高。

综合三个方案的优缺点,决定选用方案三2.1.3工作过程及集成恒流源模块总图页脚图示图2.1.3是放大器INA105_CMP组合的系列集成稳压器输出固定电压的稳压电路。

我们设计的该稳压直流恒流电源具有可调节输出电流大小和电压大小的功能,可提供电子配料秤中所有使用电源的器件。

输入端为克服整流电路的的缺点,变压器还只是采用只有一个副边的线圈,来实现全波整流。

为此我们的电路中用图中所示的单相桥式整流电路。

此电路中用了四个二极管,相互连接成电桥形式,从而输出的电压的直流成分比较高,输出波形的脉动比较小;二极管承受的最大反向电压较低,即对管子参数的要求降低了;而且电源变压器在正负半周都有电流供给负载,电源变压器的利用率得到了提高。

相关主题