流化床反应器
工业生产中常见流化床反应器形式
循环流化床烟气脱硫装置
鼓泡流化床反应器
第一节 固体流态化的基本特征
一、固体流态化现象
流态化——固体粒子象流体一样进行流动的现象。除重 力作用外,一般是依靠气体或液体的流动来带动固体粒子运 动的。
流态化的形成:
流体自下而上流过催化剂床层时,根据流体流速的不同,床层经历三 个阶段:
三、流化床反应器的流型及基本特征
• 起始流态化:固体开始流化时流体空床线速度为起始流化速度, umf一 般很小。
• 散式流态化:当流速高于最小流化速度时,随着流速的增加,得到的是 平稳的、逐渐膨胀的床层,固体颗粒均匀地分布于床层各处,床面清晰 可辨,略有波动,但相当稳定,床层压降的波动也很小且基本保持不变。 既使在流速较大时,也看不到鼓泡或不均匀的现象。称为散式流态化。 这种床层称为散式流化床,或膨胀床、均匀流化床。
流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉 煤气化的温克勒炉,但现代流化反应技术的开拓,是以40年代石油催 化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工 业等部门得到广泛应用。
流化床反应器类型
➢ 按固体颗粒是否在系统内循环分 (1)单器流化床 (2)双器流化床
➢ 按反应器的外型分 (1)圆筒形 (2)圆锥形
③颗粒比较细小,有效系数高,可减少催化剂用量; ④压降恒定,不易受异物堵塞; ⑤便于进行催化剂的连续再生和循环操作,适于催化
剂失活速率高的过程的进行,石油馏分催化流化床 裂化的迅速发展就是这一方面的典型例子。
流化床反应器的缺点
由于流态化技术的固有特性以及流化过程影响因素的 多样性,对于反应器来说,流化床又存在粉明显的局限性: ①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动, 无论气相或固相都存在着相当广的停留时间分布,物料的 流动更接近于理想混合流,返混较严重。导致不适当的产 品分布,降低了目的产物的收率;为了限制返混,常采用 多层流化床或在床内设置内部构件。反应器体积比固定床 反应器大,并且结构复杂。对设备精度要求较高; ②反应物以气泡形式通过床层,减少了气-固相之间的接触机 会,降低了反应转化率; ③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化 剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量 细粒催化剂的带出,造成明显的催化剂流失; ④床层内的复杂流体力学、传递现象,使过程处于非定常条 件下,难以揭示其统一的规律,也难以脱离经验放大、经 验操作。
特别是液固系统,常表现为散式流化床,故又称液体流化床。
• 聚式流态化:当流速进一步提高到起始鼓泡速度Umb时,床层从低部出 现鼓泡,整个床层中气泡不断产生和破裂,床层压降的波动明显增加, 颗粒不是均匀地分散于床层中,而是程度不同的一团一团聚集在一起作 不规则的运动。这种现象称为聚式流态化。这种床层称为聚式流化床或 鼓泡床。床面以下的部分为密相床(又称乳相)(密相床中形如水沸, 故又称沸腾床),床面上的部分为稀相床(又称气泡相)。
• B类颗粒,称为粗颗粒。粒度较大,在100~600μm之间, 密固度返混ρP较=小140。0k砂g粒/m是3 ~典4型00的0Bkg类/m颗3 粒。。适于流化,密相中气、
• C类为超细颗粒,粒间有粘附性,颗粒间易团聚,气体容 易பைடு நூலகம்生沟流,不适用于流化床。
• D类为过粗颗粒,流化时,易产生大气泡和节涌,操作难 以稳定,只在喷动床中才能较好流化。
鼓 泡 床
节 涌
气 流 输
送
L Lf
L Lf
L0
L Lmf
流体 流体 流体 流体 流体 流体
二、流化床反应器中颗粒的分类
颗粒的形状,尺寸和密度对其流态化的性能影响极大。 Geldart提出:对于气固流态化,根据不同的颗粒密度和粒 度,颗粒可分为A、B、C、D四类。
• A类颗粒,称为细颗粒。粒度较小,在30~100μm之间, 密度ρP<1400kg/m3。适于流化,A类(细)颗粒形成鼓泡 床后,密相中气、固返混较严重,床层中生成的气泡小, 特别适于催化过程。
➢ 按床层中是否置有内部构件分 (1)自由床 (2)限制床
➢ 按反应器内层数的多少分 (1)单层 (2)多层
流化床反应器有两种主要形式: ①有固体物料连续进料和出料装置,用于固相加工
过程或催化剂迅速失活的流体相加工过程。例如 催化裂化过程,催化剂在几分钟内即显著失活, 须用上述装置不断予以分离后进行再生。
第六章 流化床反应器
概述
流化床反应器 (fluidized bed reactor)
是利用气体或液体通过颗粒状固体层而使固体颗粒处 于悬浮运动状态,并进行气固相反应过程或液固相反应 过程的反应器。在用于气固系统时,又称沸腾床反应器
流化床反应器通常为一直立的圆筒型容器,容器下部 一般设有分布板,细颗粒状的固体物料装填在容器内,流 体向上通过颗粒层,当流速足够大时,颗粒浮起,呈现流 化状态。由于气固流化床内通常出现气泡相和乳化相,状 似液体沸腾,因而流化床反应器亦称为沸腾床反应器。
段。此时的速度称为带出速度,也称最大流化速度ut 或终端速度。
流化床反应器 fluidized reactor
流态化现象
ΔP 500
300 200
100 50
1
固定床
流化床
斜率=1
夹带开始 ΔP=W/At
2
umf
10
50
100
空床流速 u0 ㎝/s
固 定 床
起 始 流 化
( 散 式 )
膨 胀 床
( 聚 式 )
②无固体物料连续进料和出料装置,用于固体颗粒 性状在相当长时间(如半年或一年)内,不发生 明显变化的反应过程。
流化床反应器结构 反应器主体
扩大段 分离段(气泡相或稀相)
浓相段(乳相或密相) 锥底
流化床反应器的优点
与固定床反应器相比,流化床反应器的优点是: ①可以实现固体物料的连续输入和输出;
②流体和颗粒的运动使床层具有良好的传热性能,床 层内部温度均匀,可在最佳温度点操作,而且易于控 制,特别适用于强放热反应;
当流体流速很小时,固体颗粒在床层中固定不动,此时为固定床阶段。 当气速进一步加大时,床层高度逐渐增加,固体颗粒悬浮在气体中并 随气体运动而上下翻滚,此时为流化床阶段,称为流态化现象。开始流化
的最小气速称为临界流化速度 umf
当流体速度更高时,固体颗粒就不能沉降下来,正常的流化状态被 破坏,整个床层的粒子被气流带走,床层上界面消失,床层处于气流输送阶