当前位置:文档之家› 设备的技术状态管理

设备的技术状态管理


6.1 设备的技术状态管理概述
(1)立标 建立各种状态管理的原始依据,主要包括性能指标、检 查标准、管理标准和评价标准。 (2)保持 按照设备的性能指标,开展积极的维护保养工作,以保
持其原有性能,延缓劣化过程。 (3)监控 采取各种手段,及时获得设备技术状态变化的信息,并 通过与原始指标对比分析,掌握和研究设备的异常和故障。 (4)评价 对获得的技术状态信息进行分析处理,针对不同的要求, 对其异常状态进行定性或定量的评价,为维护或改进其技术状态 的各种对策措施提供依据。 (5)对策 为改善设备的异常状态和补偿磨损而采取相应措施。
t,/h

6.2 设备的可靠性
4)故障率为工作到某一时间的系统、设备、零部件等,尚未发生 故障的可靠度R(t),在下一个单位时间内可能发生故障的条件概率, 即
图6-1
设备的典型故障曲线
6.2 设备的可靠性
2.有效度A可修复系统 设备或零部件两次相邻故障间的工作时间的平均值称为平均故障 间隔期,记为MTRF。设备发生故障后,进行维修所需要的平均时
可靠度及可靠度函数
• 可靠度及可靠度函数
产品在规定的条件下和规定的时间内,完成规定功能
的概率称为可靠度。依定义可知,可靠度函数R(t)为:
R (t ) N 0 r (t ) N0
式中 N0 — t = 0时,在规定条件下进行工作的产品数; r(t) — 在0到t时刻的工作时间内,产品的累计故障数。
6.1 设备的技术状态管理概述
2.设备完好率 企业生产设备的技术状态完好程度以“设备完好率”指标进行考 核,企业应经常进行设备完好率的专项检查。设备完好率φ的计算 公式如下:
设备完好率=主要设备完好台数/主要设备台数×100%。
6.1 设备的技术状态管理概述
6.1.2 技术状态管理 设备的技术状态反映了设备在生产活动中的存在价值和对生 产的保证程度,是设备的精度和性能的集合。在设备的使用阶段, 由于工作负荷、工作条件和环境的作用,其原始技术状态会发生 变化,工作能力不断耗损。也就是说,随着时间的推移,设备的 技术状态总是要变坏的,通常我们称之为设备的劣化。为制止劣 化的发展,人们的行动形成了一个对抗过程(反劣化过程),即 维护、修理、改造的过程。
根源性分析
逐 层 深 入
根源
13:57
5WHY实例
1 机器超负荷或保险断了
2
为什么会超负荷? 轴承润滑不够 为什么轴承润滑不够 润滑油机工作不充分 为什么它工作不充分? 润滑油机的轴磨坏了 在咔哒咔哒响
为什么机器停止了运转?
如果不 问五次为什 么,保险或 轴承可能被 换。
3
4
为什么轴磨坏了 5 没有过滤器,碎金属进来了
6.1 设备的技术状态管理概述
6.1.3 技术状态的监测 状态监测是指对运转中的设备整体或局部的技术状态进行的定期 检测。状态检测的目的是及时掌握设备的实际技术状态,以便对 设备技术状态的劣化采取恢复措施。 1.状态监测的分类 状态监测从做法上分两类,即主官监测和客观监测。主观状态监 测由操作者、维修人员凭感官和经验对设备技术状态进行检验和 判断,其可靠性取决于人的技能和经验。客观状态监测则是利用 各种工具、监测仪器和监测系统对设备进行检测,以获得技术状 态的有关参数、图像等准确信息,其可靠性取决于仪器的可靠性、 仪器的操作和数据处理正确与否。 2.状态检测的应用
间,称为平均修复时间,记为MTTR。则有效度,或称有效利用率 A为
图6-2
设备费、维修费与可靠度
6.2 设备的可靠性
6.2.3 可靠性模型 当设备或系统是由多个零部件或子系统组成时,根据零部件或子 系统的连接方式不同,设备或系统的可靠性模型有以下几种。
(1)串联模型 设备或系统中零部件的失效互相独立,如果某一零 部件发生故障,就会引起整个系统失效。
第6章 设备的技术状态管理
6.1 设备的技术状态管理概述
6.2 设备的可靠性 6.3 故障分析与故障管理 6.4 设备的点检
• 设备技术状态管理是指通过检查监测等手段收集、分析和 处理设备技术状态变化的信息,及早发现或预测设备的功 能失效和故障,适时地采取维修或更换对策,以保证设备 处于良好的技术状态。 • 第一种是完好的技术状态,即设备性能处于正常可用的状 态; • 第二种是故障状态,即设备的主要性能已丧失的状态;
图6-3 串联模型 、—元件1、2的可靠度
6.2 设备的可靠性
(2)并联模型 若设备或系统由若干零部件或子系统构成,只要有一个零部 件或子系统在发挥其功能,设备或整个系统就能维持其功能,或者说即使
某一个零部件或子系统发生故障,设备或整个系统仍能维持正常功能而不
失效,这种结构形式称为并联模型,如图6-4所示。
6.3 故障分析与故障管理
(5)运转和维修的因素 包括运转工况参数的异常和维修制度的不 完善。 6.3.3 故障管理
设备故障管理是设备状态管理的重要组成部分,是维修管理 的基础。开展故障管理的目的在于早期发现故障征兆,及时进行 预防维修。 1)做好宣传教育工作,调动全员参加故障管理工作。 2)从基础工作抓起,紧密结合生产要求和设备现状,确定设备故 障管理的重点。 3)做好设备的故障记录,填好原始凭证,以保证信息及时、准确。 4)进行故障的统计、整理和分析。
6.4 设备的点检
(3)专项点检 一般由专职维修人员(含工程技术人员)针对某些特 定的项目,如设备的精度、某项或某些功能参数等进行定期或不 定期检查测定,目的是为了了解设备的技术性能、专业性能,通
2.故障概率密度
故障概率密度是累积故障概率对时间的导数,记作 f(t)。它表示产品寿命落在包含的单位时间内的概率, 即产品在单位时间内失效的概率。可表示为:
dF (t ) d [1 R(t )] dR (t ) f (t ) dt dt dt
失效密度函数f(t)
O
2017/11/20
图6-4 并联模型 、—元件1、2的可靠度
6.2 设备的可靠性
(3)串并联模型 把串联模型与并联模型结合起来布置(连接)形成 串联、并联模型,称为串并联模型,如图6-5所示。
图6-5 串并联模型 、、—元件1、2、3的可靠度
6.2 设备的可靠性
(4)备用冗余模型 在设备或系统构成中,把同功能部件 或子系统重复配置以备用,当其中一个部件发生故障时, 用备用的替代以继续维持功能,这就是备用冗余。
(1)设计因素 应力过高;应力集中;材料、配合、润滑方式选用 不当;对使用条件、环境影响考虑不周等。 (2)装配调试因素 表现为啮合传动件如齿轮、蜗杆、螺旋等啮合 间隙不合适;连接零件的必要防松措施不可靠;铆、焊结构的必 要探伤检验不良;润滑与密封装置不良等。 (3)制造(工艺)因素 如毛坯加工缺陷(铸、锻、焊、热处理、压力 加工等缺陷);切削加工缺陷等。 (4)材料因素 设计选材不当;毛坯加工工艺过程中产生的材料缺 陷等。
6.3 故障分析与故障管理
5)采用监测仪器和诊断技术,对重点设备的重点部位进行有计划 的监督,以发现故障发生前的征兆和信息。 6)针对故障发生的原因、类型,不同设备的特点采取不同的对策,
建立适合本厂的设备维修管理制度。 7)建立故障查找逻辑程序。
6.4 设备的点检
6.4.1 设备点检的分类 按照点检的周期和业务范围,点检分为日常点检、定期点检 和专项点检。
要素:对象、规定条件、预定的时间和良好的性能。 6.2.2 可靠性的数量指标 1.可靠度、不可靠度、故障密度函数及故障率 1)可靠度是系统、设备、部件或零件在规定条件下和规定的时间 内,能正常工作的概率,用R(t)表示。 2)不可靠度又称失效概率,是系统或零件在规定的条件下和规定 的时间内,不能完成预定工作的概率,用F(t)表示。 3)将F(t)对时间微分得
图6-6
备用冗余模型
6.3 故障分析与故障管理
6.3.1 故障的分类 故障可以从各种角度、不同观点进行分类。 (1)按故障的性质分类 可分为间断性故障;永久性故障。
(2)按故障与时间的关系和有无发展过程分类 可分为突发性故障; 渐发性故障。 (3)按故障程度分类 可分为破坏性故障;渐衰失效性故障。 (4)按故障原因分类 可分为磨损性故障;错用性故障;固有薄弱 性故障。 (5)按故障危险性分类 可分为危险性故障;安全性故障。 (6)按故障的发生、发展规律分类 可分为随机故障;有规则故障。 6.3.2 故障分析
6.3 故障分析与故障管理
故障分析是故障管理的重要内容,其目的是为了探索故障发 生的原因与机理,判断故障发生的概率与后果,预防与消除故障, 以提高设备的可靠性与安全性。
1.故障分析的基本程序和方法
6.3 故障分析与故障管理
故障分析的基本程序和方法如图6⁃7所示。在故障分析的初期,要 对故障实物(现场)和故障发生时的情况,进行详细的调查和鉴 定,还要尽可能详细地从使用者和制造厂收集有关故障的历史资
13:57
如果不 装上过滤器 问题将再次 出现。
逆推分析法
13:57
13:57
因果图分析法
13:57
6.3 故障分析与故障管理
图6-7
故障分析的基本程序和方法
6.3 故障分析与故障管理
图6-8
故障分析常用的研究方法
2.故障产生的原因
6.3 故障分析与故障管理
从宏观上看,无论是设备或其零部件,影响其失效的基本因 素都可归纳为设计、制造过程因素(原始因素)和运转、维修过 程因素(使用因素)两大方面。
2017/11/20
12
累积故障分布函数
• 累积故障概率
产品在规定的条件下和规定的时间内,丧失规定功能的概率称为 累积故障概率(又叫不可靠度)。
依定义可知,产品的累积故障概率是时间的函数,即
r (t ) F (t ) N0
显然,以下关系成立:
R(t ) F (t ) 1
相关主题