当前位置:
文档之家› 头盔式单目微光夜视仪中光学系统的设计_尚华
头盔式单目微光夜视仪中光学系统的设计_尚华
统中光学镜头设计是否合理, 将对微光夜视仪成像 质量起决定作用。物镜的焦距、有效口径、视场和相
对孔径都是光学系统设计时所需的主要参数。下面
我们对物镜的主要参数进行计算[ 2 ]。
1) 有效口径 (D ) 的计算 根据探测方程, 光子噪声所限制的分辨率Α2 为
Α2 =
2K MDC
[ 2e
1
(ΣtsΘE ) ] 2
第 28 卷 第 3 期 2007 年 5 月
Jo
u
应用 rnal of A
光学 pp lied O
p
t
ics
V o l. 28 , N o. 3 M ay, 2007
文章编号: 100222082 (2007) 0320292205
头盔式单目微光夜视仪中光学系统的设计
图 1 微光夜视仪工作原理图 F ig. 1 Pr inc iple of LLL n ight-v ision system
2 微光夜视仪光学系统的设计
微光夜视仪中光学系统的设计包括物镜和目 镜系统的设计。 设计要求如下:
1) 在照度为 1×10- 3 lx 时, 对直立人的探测 距离为 250 m , 识别距离为 150 m ;
对孔径D f ≥1 1. 27, 全视场畸变< 5% , 传递函数 (M T F ) : 轴上 (空间频率为 40 lp mm ) ≥0. 62; 轴 外 (空间频率为 40 lp mm ) ≥0. 40。
2) 初始结构的选择 夜视仪器常用的物镜有 2 种类型: 匹兹伐型和 双高斯型。 当仪器的视场要求不大时, 可以采用匹 兹伐型物镜, 其基本结构是由 2 个正光焦度的双透 镜组成, 如图2 所示。这种物镜结构简单, 球差和慧 差校正较好, 但视场加大时场曲严重, 故只能用于 小视场情况。
L 为视距。
目 标的空间频率 Χ取值为: Χ发现= 1, Χ识别 =
4, Χ分清= 8, Χ最佳= 15, 分别对应发现、分辨、识别、
分清和最佳分辨率。 根据约翰逊准则: 最佳分辨率
是指分清目标的概率达到 100% ; 考虑上限公差的
分辨率, 以适应军用光学仪器可靠性要求。
根 据设计要求, 在 1×10- 3 lx 照度时, 对直立
中图分类号: TN 223 文献标志码: A
L en s des ign in helm et-m oun ted LLL n ight-v is ion system
SHAN G H ua, L IU J un, GAO M ing, M AO Cu i2li, M EN G L i2zhuang
取 K = 2. 2; Α2 为光子噪声所限制的分辨率。
从 (2) 式可以看到, 计算D 时首先必须计算出
光子噪声所限制的分辨率 Α2, 已知
Α2 =
(Α23-
Α21 )
1 2
(3)
对于夜视系统来说, 分辨率= 目标临界尺寸
(目标的空间频率×视距) , 即
Α=
A
Χ×L
(4)
式中: A 为目标临界尺寸; Χ为目标的空间频率;
视场均为 2Ξ= 39. 6°, 取 2Ξ= 40°
4) 相对孔径 (D f ′) 的计算
由 以 上 计 算 可 知, 物 镜 有 效 口 径 D =
19. 63 mm , 物镜焦距 f ′= 25 mm , 则物镜相对孔径
为D f ′= 1 1. 274。
2. 1. 3 目镜技术参数的计算
目镜的作用是放大像增强器荧光屏上的目标
2) 环境温度为- 30 ℃~ + 50 ℃; 3) 整机体积小、质量小。 2. 1 光学系统技术参数的确定 2. 1. 1 微光夜视仪的放大率 放大率是仪器系统的一个重要技术指标, 它取 决于作战人员需要观察的目标距离和区域场景。一 般情况下, 微光夜视仪的放大率越大, 观察的距离 就越远, 但是观察的视场就越小。 视场太小对作战 人员来说很不利。作战人员希望通过微光夜视仪观 察到的目标与没有使用仪器时看到的一样真实。因 此, 一般情况下系统放大率选择 1×。 2. 1. 2 物镜技术参数的计算 物镜的作用是把自然微光照射下的目标成像 在位于焦平面的像增强器的光阴极面上。在夜视系
代入
(5)
式可得
f
′物=
15L N ·A
=
154×2×1520≈ 25 mm
3) 视场 (Ξ) 的计算
选取像增强器为超二代像增强器。 超二代像
增强器的通光口径即为物镜的视场光阑, 可用下式
计算:
Ξ=
a rc tan
u 光圈
f ′物 =
a rc tan
295 =
19.
8°
其中u 光圈为像增强器光阴极通光孔径。所以其物镜
Α3 =
L
A
·Χ识别
=
2 150×4
=
3.
3 m rad
Α1 =
L
A
·Χ最佳
=
150×2 15=
0.
89 m rad
·294·
应用光学 2007, 28 (3) 尚 华, 等: 头盔式单目微光夜视仪中光学系统的设计
再将 Α2 和 Α1 代入 (3) 式得
Α2 =
A L
(1Leabharlann Χ2识别-1 Χ2最佳
的人的识别距离为150 m , 临界尺寸A = 2 m , (3) 式
中 Α3 即为识别分辨率。 将对应的空间频率 Χ识别= 4
代入 (4) 式可求出Α3。 Α1 为像增强器调制度限制的
仪器分辨率。 在计算过程中, 目标空间频率取最佳
分辨率对应的空间频率 , 即 Χ最佳= 15, 同样将它代
入 (4) 式可计算出 Α1, 即
)
1 2
=
3.
2 m rad
最后将 Α2 代入 (2) 式可计算出有效口径的尺寸
D = 19. 63 mm 2) 焦距 (f ′) 的计算 由像增强器调制度限制的仪器分辨率
Α1 =
N
1 ·f
′物
即 f ′= 1 (N ·Α1)
(5)
其中N 表示像增器限制的空间频率, 取N = 42。
将 Α1=
L
A
·Χ最佳
(1)
由 (1) 式得:
D
=
2K M Α2C
[
2e
1
(ΣtsΘE ) ] 2
(2)
式中: D 为物镜的有效孔径; M 为物镜的调制传
递 函数 (轴上) , 取 70% ; C 为景物的调制度, 取
0. 35; e 为电子电荷量, e= 1. 6×10- 19C; Σ 为物
镜透过率, 取 Σ= 0. 8; t 为积累时间, t= 0. 2 s; s
像。在微光夜视仪的光学设计中, 需要确定目镜的
一些主要参数, 如目镜焦距和出瞳直径等。 这些参
数是否得当, 不仅影响夜视仪的体积、质量、倍率和
视场, 同时还影响其夜间观察的性能[3]。
1) 焦距 (f ′目)
由系统的放大关系可知
# = - f ′物 f ′目 式中: # 为系统放大率, # = - 1×; f ′物为物镜焦
(Schoo l of O p to 2electron ica l Engineering, X i′an T echno logica l U n iversity)
Abstract: To im p rove the im ag ing qua lity of the len s u sed in helm et2m oun ted low 2level2ligh t (LLL ) n igh t vision system and m ake the len s ligh t in w eigh t, sm a ll in size, com p act in st ructu re, a h igh o rder a sp heric len s is designed. A cco rd ing to the theo ret ica l ca lcu la t ion of the len s p a ram eters sp ecific to the helm et2m oun ted LLL n igh t2vision system , len s p a ram eters a re designed to m eet the dem and. W ith the h igh o rder a sp heric len s designed, the num ber of len ses in ob ject len s is reduced from 9 to 6 and the num ber of len ses in ocu la r is reduced from 9 to 7. T he ana lysis resu lt s show tha t the configu ra t ion of the a sp heric su rface fo r helm et2m oun ted LLL n igh t2vision system s can m ake it s len s configu ra t ion sim p le. Key words: LLL n igh t2vision system ; design of op t ica l system ; a sp heric su rface len s
·293·
术的提高, 以及计算机在光学设计方面的应用, 使 非球面的计算变得比较容易, 所以在光学系统设计 中可以适当使用非球面。
鉴于此, 我们在设计微光夜视仪光学系统时, 在保证光学系统光学性能和像质的前提下, 采用非 球面透镜可达到使系统结构简化、体积缩小、质量 减小的目的。
1 微光夜视仪的原理