当前位置:文档之家› 串行接口同步通信协议.doc

串行接口同步通信协议.doc

串行接口同步通信协议

[摘要]:接口在微型计算机系统的设计和应用中占有极为重要的地位。在微型计算机系统中,CPU要与存储器和输入/输出设备之间交换信息,这些信息的交换要借助接口来实现。接口是沟通微处理机和外部设备之间的桥梁,它减轻了CPU的负担,使CPU能够充分的发挥任务管理和逻辑判断作用,使CPU和外部设备能更加协调的完成输入/输出工作,从而提高整机的工作效率和系统功能。串行接口是使用串行方式进行数据传输的输入/输出接口,根据在串行通信中数据的定时的不同,串行通信可分为同步通信和异步通信。同步通信中为保证通信的正确,发送装置和接收装置事先必须有一个双方共同遵守的协议,这就是串行接口同步通信协议。

[关键词]:输入/输出接口,串行接口,同步通信,协议,SDLC/HDLC规程

一、串行接口

在计算机领域内,有两种数据传送方式:串行传送和并行传送。并行数据传送中,数据在多条并行1比特宽的传输线上同时由源传送到目的,这种传送方式也称为比特并行或字节串行。串行数据传送中,数据在单条1比特宽的传输线上,1比特1比特

的按顺序分时传送。

串行通信一般使用在计算机与计算机之间、计算机和远程终端之间、终端与终端之间的通信中,传输距离通常从几米到数千公里。与典型设备相关的串行接口,数据传输的速率每秒在0~2百万比特的范围内。串行传输的速率和距离成反比,数据传输速率和距离的关系如图所示。

串行通信接口的信号电平常采用RS-232-C信号电平或20mA电流环路操作方法。

串行数据的发送由发送时钟控制。数据发送过程:把并行的数据序列送入移位寄存器,然后通过移位寄存器由发送时钟触发进行移位输出,数据位的时间间隔可由发送时钟周期来划分。发送时钟、待发送的二进制数据和出现在传输线上的信号波形三者的关系如图所示。

串行数据的接收由接收时钟检测,接收数据的过程:把由传输线送来的串行数据序列由接收时钟作为输入移位寄存器的触发脉冲,逐位打入移位寄存器,接收过程就是将串行数据序列逐位移入移位寄存器而装配成为并行数据序列的过程。接收时钟、传输线上送来的数字信号波形和接收器检测到的二进制数据序列三者的对应关系如图所示。

二、同步传送

高速通信要求采用同步传送。同步通信如果具有适当的电气连接,很容易达到500kbps的传输速度。

同步通信发送端和接收端必须用共同的时钟源才能保持它们之间的准确同步。同步传输时,每个字符没有起始位和停止位,它不是用起始位来标志字符的开始,而是用一串特定的二进制序列,称为同步字符,去通知接收器串行数据的第一位何时到达。然后,串行数据信息以连续的形式发送,每个时钟周期发送1位数据。接收器搜索到同步字符后,才开始接收数据位。因此,同步传输时数据成批连续发送,信息字符间不留空隙,它严格按照约定的速率发送和接收。发送器在发送数据过程中,如果出现没有准备好发送数据的情况,发送装置就会发送同步字符来填充。同步传送的成批数据称为数据流或数据场。

同步传送为保持发送端和接收端的同步,发送器和接收器不能采用独立的局部时钟,接收时钟是从接收数据流分离出来的。为达到接收和发送的准确同步,其中一个方法是采用编码和解码的原理,即在发送端利用编码器把要发送的数据和发送时钟组合在一起,通过传输线发送到接收端,在接收端再用解码器从数据流中分离出接收时钟。常用的编码解码器有曼彻斯特编码解码。

三、同步通信规程

同步通信规程可以分为两类,一类是面向字符型的规程,另一类是面向比特型的规程。

(一)面向字符型的规程

面向字符型的规程于1960年就制定了。这类规程又分为基本型和扩充型两种,扩充型又分为全双工会话型和代码透明型。国际标准化组织ISO制定的基本型通信规程BASIC,以及IBM 公司制定的双同步通信规程BISYNC都是面向字符型的通信规程。

这种规程的特点是:规定几个字符作为传输控制的专用字符,信息长度是8的整数倍,传输速率为200~4800bps。

(二)面向比特型的通信规程

面向比特型的通信规程是1969年由IBM公司首先提出的。这种规程的特点是没有规定专用的传输控制字符,而是由一些比特组合作为传输控制用,其信息长度可变,而且不是字符编码的整数倍,其传输速率可达到2400bps以上。

面向比特型的通信规程有:IBM公司制定的同步数据链路控制规程SDLC,ISO制定的高级数据链路控制规程HDLC,美国国家标准化协会ANSI制定的先进数据通信规程ADCCP,CCITT 的建议书也是HDLC的变体之一。

1、SDLC/HDLC规程

SDLC/HDLC规程是当前同步通信普遍采用的规程,有很多可编程通用串行I/O接口支持这类规程,它将很有可能成为最广

泛应用的网络物理层协议,特别是很多单片机都配备支持这种规程的串行I/O通道。

SDLC和HDLC两种规程的格式是一样的,只是在某些技术细节上两者有区别。

SDLC/HDLC规程是以帧为单位传送信息的。一帧信息是若干场组成的。首先是起到同步字符作用的标志场,简称为F场;其后跟着地址场,简称为A场;地址场后是控制场,简称为C 场;控制场后才是信息场,简称为I场;再后是16位的帧校验场,简称为FC场;最后是结束标志。由此看出,SDLC/HDLC 规程的标志字符是帧的边界,接收器搜索到标志符后开始一帧信息的接收。以结束标志来作为一帧的结束,接收器一旦收到结束标志,前面的16位就用作CRC循环冗余校验码,以便确定前面传送过程中是否出现了错误。

SDLC/HDLC规程的所有场都是由最低有效位开始传送的。

(1)SDLC/HDLC规程的标志场

SDLC/HDLC规程的标志符是一个字节长,其格式为01111110,即两个0中间夹着6个连续的1。一帧信息以标志符为起始,并以标志符作为结束。

为了使数据具有透明性,即任何数据均能传输,又要使标志符具有唯一性,即在数据序列中不能再出现标志符格式的序列,在发送一方要采用“0比特插入技术”,即发送方发送信息帧时,对于除标志符以外的所有信息,只要遇到5个连续的1,就在其

后自动的插入1个0。接收时为恢复信息的原来格式,在接收方面要采用“0比特删除技术”,即除标志符外,当连续接收到5个1时,就自动删除1个0。“0比特插入/删除技术”分别由发送器和接收器用硬件方法来实现。按规程规定,插入的0不参加CRC循环冗余校验。

(2)SDLC/HDLC规程的地址场和控制场

SDLC规程的地址场和控制场都是1个字节长,而HDLC规程的地址场可以为任意字节,控制场可以为1个字节或2个字节。

接收方通过检查每一个地址字节的第一位确定地址字节数。若第一位为0,则后面还跟有1个地址字节;若第一位为1,则此字节就是最后一个地址字节。控制场的字节数也是通过检查第一个字节的第一位确定的。若第一位为0,则控制场是2个字节长;否则就是1个字节长。

当由SDLC/HDLC规程支持的网络实现通信时,都是由一个主站和一个或多个次站组成,次站之间不能直接通信。次站通常不只一个,每个次站分配有地址,主站发向次站的信息帧必须有次站的地址,即地址场。各个次站都可以收到主站发出的地址场,然后与自己的地址相比较,只有与主站发出的地址一致时,次站才能可是接收信息场。

(3)SDLC/HDLC规程的信息场

控制场后跟着信息场,信息场就是要传送的信息。信息场的长度可以从0位到存储器能够处理的最大位数,即信息的长度不

是字符的整数倍。信息场可以是任意数目和任意模式的二进制位。

(4)SDLC/HDLC规程的帧校验场

在信息场后紧跟着两个字节的CRC校验场。SDLC/HDLC规程只能用CRC进行差错校验,其生成多项式为:X16+X12+X5+1,是16位的,CRC字符是两个字节。

除了标志场和自动插入的0比特之外,所有信息均参加CRC 计算。

(5)SDLC/HDLC规程的异常结束标志

SDLC/HDLC规程不允许信息中间有空白,也不能像其它同步规程那样,当信息跟不上的时候自动插入同步字符。所以要求发送器在数据发送的开头就必须将全部数据都准备在缓冲区中。若发送过程中数据没有准备好,则发送器将会作无数据发送处理,即发送一个异常结束字符,或称为失效字符。接收器收到异常结束字符后,自动将本帧作废。

在SDLC规程中,异常结束字符是8个连续的1;在HDLC 规程中,异常结束字符是7个连续的1。

在异常结束字符中不能使用“0比特插入/删除技术”。

SDLC/HDLC规程规定,当一帧结束而发送器仍处于开放时,发送器可以发送连续的标志符序列,表示器件空闲状态。当发送器被禁止时,传输线就出现连续的高电平,表示线路空闲。

2、几种常用的同步串行传输格式

同步通信由于采用的同步手段和同步字符的不同,存在着不同的格式结构。

对同步字符的检测和同步控制,在串行I/O接口芯片内部进行,称为内同步。内同步又分为单同步和双同步两种,单同步只有一个字节的同步字符,双同步有两个字节的同步字符。SDLC/HDLC规程就是内同步的一种。

外同步是指对同步字符的检测在串行接口电路芯片外部进行的,当外部硬件电路检测到同步字符时,就给串行接口发来一个同步信号SYNC,当I/O接口接收到同步信号后,立即开始接收信息。

几种同步串行传输格式如图所示。

四、结束语

在微型计算机串行同步通信中,通信协议是为了保证串行同步通信的正确,发送装置和接收装置事先约定的一个要求双方共同遵守的协议。在串行接口同步通信协议的约束下,发送方与接收方有条不紊的进行信息的传送。其中SDLC协议和HDLC协议是使用最为广泛的串行接口同步通信协议。

参考文献:

[1]《微型计算机接口技术》李大友主编高等教育出版社

[2]《SDLC/HDLC协议》章铭著

[3]《微型计算机接口》韩涛著

四位二进制同步加法计数器(缺0011 0100 0101 0110)

成绩评定表

课程设计任务书

摘要 本次课设题目为四位二进制加法计数器(缺0011 0100 0101 0110)。 首先在QuartusII8.1中建立名为count16的工程,用四位二进制加法计数器的VHDL语言实现了四位二进制加法计数器的仿真波形图,同时进行相关操作,锁定了所需管脚,将其下载到实验箱。 然后,在Multisim软件中,通过选用四个时钟脉冲下降沿触发的JK触发器和同步电路,画出其时序图,卡诺图,建立相关方程,做出相关计算,完成四位二进制加法计数器(缺0011 0100 0101 0110)的驱动方程。在Multisim软件里画出了四位二进制加法计数器的逻辑电路图。经过运行,分析由红绿灯的亮灭顺序及状态,和逻辑分析仪里出现波形图。说明四位二进制加法计数器顺利完成。 关键词:计数器;VHDL语言;仿真;触发器。

目录 一、课程设计目的 (1) 二、设计框图 (1) 三、实现过程 (2) 1、QUARTUS II实现过程 (2) 1.1建立工程 (2) 1.2编译程序 (7) 1.3波形仿真 (10) 1.4 仿真结果分析 (14) 1.5引脚锁定与下载 (14) 2、MULTISIM实现过程 (16) 2.1求驱动方程 (16) 2.2画逻辑电路图 (19) 2.3逻辑分析仪的仿真 (20) 2.4结果分析 (21) 2.5自启动判断 (22) 四、总结 (23) 五、参考书目 (24)

一、课程设计目的 1 了解同步加法计数器工作原理和逻辑功能。 2 掌握计数器电路的分析、设计方法及应用。 3 学会正确使用JK 触发器。 二、设计框图 状态转换图是描述时序电路的一种方法,具有形象直观的特点,即其把所用触发器的状态转换关系及转换条件用几何图形表示出来,十分清新,便于查看。 在本课程设计中,四位二进制同步加法计数器用四个CP 下降沿触发的JK 触发器实现,其中有相应的跳变,即跳过了0011 0100 0101 0110四个状态,这在状态转换图中可以清晰地显示出来。具体结构示意框图和状态转换图如下: 1010 101111001101111011110 /1 /1000 101101110010000100000/0/0/0/0/0/0/0/0/0/????←????←????←????←????←↓↑???→????→????→????→????→? B:状态转换图

串口和并口的区别

并口、串口、COM口区别 并行接口,简称并口。并口采用的是25针D形接头。所谓“并行”,是指8位数据同时通过并行线进行传送,这样数据传送速度大大提高,但并行传送的线路长度受到限制,因为长度增加,干扰就会增加,数据也就容易出错,目前,并行接口主要作为打印机端口等。 并口的工作模式: 1:SPP(Standard Parallel Port)称为标准并口,它是最早出现的并口工作模式,几乎所有使用并口 的外设都支持该模式。 2:EPP(Enhanced Parallel Port)称为增强型高速并口,它是在SPP 的基础上发展起来的新型工作模式,也是现在应用最多的并口工作模式,目前市面上的大多数打印机、扫描仪都支持EPP 模式。 3:ECP(ExtendedCapability Port)即扩充功能并口,它是目前比较先进的并口工作模式,但兼容性问题也比较多,除非您的外设支持ECP 模式,否则不要选择该模式。 串口叫做串行接口,也称串行通信接口,即COM口。按电气标准及协议来分包括RS-232-C、RS-422、RS485、USB等。RS-232-C、RS-422与RS-485标准只对接口的电气特性做出规定,不涉及接插件、电缆或协议。USB是近几年发展起来的新型接口标准,主要应用于高速数据传输领域。 RS-232-C:也称标准串口,是目前最常用的一种串行通讯接口。它是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”。传统的RS-232-C接口标准有22根线,采用标准25芯D型插头座。后来的PC上使用简化了的9芯D型插座。现在应用中25芯插头座已很少采用。现在的电脑一般有两个串行口:COM1和COM2,你到计算机后面能看到9针D形接口就是了。现在有很多手机数据线或者物流接收器都采用COM口与计算机相连。

18F66K80串行口中文详解

SPEN=1 TRISx=1 异步模式、同步模式主动 每个增强型USART模块的操作 通过三个控制寄存器: ?发送状态和控制(TXSTAx) ?接收状态和控制(RCSTAx) ?波特率控制(BAUDCONx) TXSTAx: 第7位CSRC:时钟源选择位 异步模式:随意设置。 同步模式:1 =主模式(时钟来自内部BRG)0=从模式(从外部时钟源) 第6位TX9:9位发送使能位 1 =选择9位发送0 =选择8位传输 第5位TXEN:发送使能位(1)1 =使能发送0=发送被禁用 第4位SYNC同步:EUSART模式选择位 1 =同步模式0 =异步模式 第3位 SENDB:发送间隔字符位 异步模式: 1 =在下一次发送时发送同步间隔(完成后由硬件清零)0 =同步间隔发送完成同步模式:CSRC 第2位BRGH:高波特率选择位异步模式: 1 =高转速0=低转速 同步模式:未使用的这种模式。 位1 TRMT:发送移位寄存器状态位 1 = TSR为空0 = TSR是满 位0 TX9D:发送数据的第9位可以是地址/数据位或奇偶校验位。 RCSTAx: 第7位SPEN位置:串行端口使能位 1 =使能串口(配置RXx /的DTX及TXXX / CKx为串口引脚引脚) 0 =串行端口被禁用(在复位状态) 第6位RX9位置:9位接收使能位 1 =选择9位接收0 =选择8位接收 第5位SREN:单接收使能位 异步模式:无需设置。 同步模式—主动模式: 1 =使能接收单0 =禁止接收单此位接收完成后清零。 同步模式—从动模式:无需设置。 第4位CREN:连续接收使能位 异步模式: 1 =使能接收器0 =禁止接收器 同步模式: 1 =使能连续接收,直到使能位CREN位被清零 0 =禁止连续接收 第3位ADDEN:地址检测使能位 异步模式9位(RX9位置= 1): 1 =使能地址检测,允许中断并装载接收缓冲器当RSR <8>设置 0 =禁止地址检测,所有字节接收和第九位,可作为奇偶校验位 异步模式9位(RX9位置= 0):无需设置。 第2位FERR:帧错误位 1 =帧错误(可以通过阅读RCREGx清理登记和接收下一个有效字节) 0 =无帧错误

高速伺服总线及接口

高速伺服总线及接口在数控行业的发展概况 ——机自14班2110101092 牛善涛在计算机系统中,总线接口对整个系统的性能和功能都有直接影响,有关专家预测,在下一世纪里,串行总线将逐渐取代并行总线。 在数控系统中,个人计算机技术与数控技术越来越紧密地结合,由此而产生的具有开放性的PCNC数控系统,正在取代传统形式的数控系统,并成为市场的主流产品。计算机总线结构的变革,必将影响数控系统的体系结构,串行总线的应用将极大地改变现有的传统数控系统的结构形式。 串行总线的优点: 同并行总线相比,串行总线具有许多优点。串行总线连接引脚数量少,连接简单,成本较低,系统可靠性高。串行总线对系统体系结构具有重大的影响,它的应用有助于数据流计算机体系结构的实现。 对于高速计算机系统,串行总线比并行总线更容易使用。在并行总线中,传输数据的各个位必须处于一个时钟周期内的相同位置,频率越高,对器件的传输性能和电路结构要求越严格,系统设计难度加大,致使系统成本提高,可靠性降低。相比之下,使用串行总线时,数据的各个位是串行传输的。在串行总线设计时,既可以嵌入时钟信号作为同步信号,也可以采用锁相环的时钟恢复方式;同并行总线相比,串行总线的传输线效应比较容易处理,从而降低设计难度和系统成本。 另外,以串行信息包为基础的系统,不需要编写驱动程序。当断开任何一根互连线,对全部信息包进行解码时,串行总线将这些信息包移入存储器并中断处理器,这是一种局部的中断或事件。随后微处理器将查看这些信息包,而不需要用驱动程序进行上述工作。系统将成为一种信息传递系统,而不是事件驱动系统。 外围串行总线方式,如IEEE-1394/火线和USB(通用串行总线),已能成功应用。某些供应商准备采用某种串行总线方式替代PCI(外围器件互连)系统总线。

同步二进制加法计数器

同步二进制加法计数器 F0302011 5030209303 刘冉 计数器是用来累计时钟脉冲(CP脉冲)个数的时序逻辑部件。它是数字系统中用途最广泛的基本部件之一,几乎在各种数字系统中都有计数器。它不仅可以计数,还可以对CP 脉冲分频,以及构成时间分配器或时序发生器,对数字系统进行定时、程序控制操作。此外,还能用它执行数字运算。 1、计数器的特点: 在数字电路中,把记忆输入CP脉冲个数的操作叫做计数,能实现计数状态的电子电路称为计数器。特点为(1)该电路一般为Moore型电路,输入端只有CP信号。 (2)从电路组成看,其主要组成单元是时钟触发器。 2、计数器分类 1) 按CP脉冲输入方式,计数器分为同步计数器和异步计数器两种。 同步计数器:计数脉冲引到所有触发器的时钟脉冲输入端,使应翻转的触发器在外接的CP脉冲作用下同时翻转。 异步计数器:计数脉冲并不引到所有触发器的时钟脉冲输入端,有的触发器的时钟脉冲输入端是其它触发器的输出,因此,触发器不是同时动作。 2) 按计数增减趋势,计数器分为加法计数器、减法计数器和可逆计数器三种。 加法计数器:计数器在CP脉冲作用下进行累加计数(每来一个CP脉冲,计数器加1)。 3) 按数制分为二进制计数器和非二进制计数器两类。 二进制计数器:按二进制规律计数。最常用的有四位二进制计数器,计数范围从0000到1111。 异步加法的缺点是运算速度慢,但是其电路比较简单,因此对运算速度要求不高的设备中,仍不失为一种可取的全加器。同步加法优点是速度快,虽然只比异步加法快千分之一甚至几千分之一秒,但对于计数器来讲,却是十分重要的。所以在这个高科技现代社会中,同步二进制计数器应用十分广泛。 下图为三位二进制加法计数器的电路图。 图1 三位二进制计数器 图示电路为对时钟信号计数的三位二进制加法计数器或称为八进制加法计数器。 该电路的经典分析过程: 1.根据电路写出输出方程、驱动方程和状态方程 2. 求出状态图 3.检查电路能否自启动 4.文字叙述逻辑功能 解:

第九章并行接口与串行接口习题选解

9.4写出下列两种情况下8,}55A的工作方式控制字(包括I/O方式控制字和必要的按位置位/复位控制字)。 (1) 8255A用做键盘和终端地址接口,如图9 ..4所示。. (2)8255A用做基本软盘接日,如图9.5所示。 解:(1)由图9.4可知:A口工作在方式1输人,采用中断读键盘,C口的PC4 , PC5为A口方式1输人提供固定的握手联络信号,而PC6,PC7用于输出“LT忙”和“测试LT",所以C口高4位工作在方式。输出,B口用于输人终端地址,所以B口应工作在方式。输人。由此分析可知,8255A的初始化包括设置工作方式和开中断操作,其控制字为: 工作方式控制字:1011001 x B 按位置位/复位控制字(开放中断INTEA=1,即PC4置位):00001001B (2) A口工作在方式2中断方式输人/输出,B口和C口低4位工作在方式0输出,所以8255A的初始化也包括设置工作方式和开中断操作,其控制字为: 工作方式控制字:11 x x x 000B 开放输人中断按位置位/复位控制字,即PC4置位:0000l001B 开放输出中断按位置位/复位控制字,即PC6置位:00001101B 9.5设8255A的端口A,B,C和控制寄存器的地址为F4H,F5H,F6H,F7H,要使A口工作于方式0输出,B口工作于方式1输人.C口上半部输人,下半部输出,且要求初始化时使PC6=0.试设计82SSA与PC系列机的接A电路,并编写初始化程序。 解:82SSA与FC系列机的接口电路如图9.5所示。初始化程序如下:· MO V A L , 10001110F3 ;方式字 OUT 0F7H, AL MOV AL,00000110B ;PC6=0 OUT 0F7H, AL MOV AL,00000101 ;开中断 OUT 0F7H,AL 9.6在PC系列微机系统中,用8255A做某快速启停电容式纸带机接口的硬件连接如图9.7

串行通信接口典型应用举例

串行通信接口典型应用举例 SCI_FLAG .usect ".data0",1 ;SCI标志寄存器 TXD_PTR .usect ".data0",8 ;发送的数据存放区 RXD_PTR .usect ".data0",8 ;接收到的数据存放区 .include "F2407REGS.H" ;引用头部文件 .def _c_int0 ;(1)建立中断向量表 .sect ".vectors" ;定义主向量段 RSVECT B _c_int0 ;PM 0 复位向量 1 INT1 B GISR1 ;PM 2 中断优先级1 4 INT2 B PHANTOM ;PM 4 中断优先级2 5 INT3 B PHANTOM ;PM 6 中断优先级3 6 INT4 B PHANTOM ;PM 8 中断优先级4 7 INT5 B PHANTOM ;PM A中断优先级5 8 INT6 B PHANTOM ;PM C 中断优先级6 9 RESERVED B PHANTOM ;PM E (保留位) 10 SW_INT8 B PHANTOM ;PM 10 用户定义软件中断— … SW_INT31 B PHANTOM ;PM 3E 用户定义软件中断— ;中断子向量入口定义pvecs .sect ".pvecs" ;定义子向量段 PVECTORS B PHANTOM ;保留向量地址偏移量0000h B PHANTOM ;保留向量地址偏移量0001h … B PHANTOM ;保留向量地址偏移量0005h B SCI_RX_ISR ;保留向量地址偏移量0006h SCI接收中断 B PHANTOM ;保留向量地址偏移量0007h … B PHANTOM ;保留向量地址偏移量0041h ;(2)主程序: .text _c_int0 SETC INTM CLRC SXM CLRC OV M CLRC CNF 214

三位二进制加法计数器(无效态:000,001)设计一个基于74138的组合电路 设计一个140进制加法计数器

目录 1 课程设计的目的与作用 (1) 2 设计任务 (1) 3 设计原理 (2) 3.1三位二进制加法计数器 (2) 3.2全加器 (2) 3.3用集成芯片设计一个140进制的加法器 (2) 4实验步骤 (3) 4.1加法计数器 (3) 4.2全加器 (6) 4.3用集成芯片设计一个140进制的加法器 (7) 5仿真结果分析 (8) 6设计总结 (9) 7参考文献 (9)

1课程设计的目的与作用 (1)了解同步计数器及序列信号发生器工作原理; (2)掌握计数器电路的分析,设计方法及应用; (3)掌握序列信号发生器的分析,设计方法及应用 2 设计任务 2.1加法计数器 (1)设计一个循环型3位2进制加法计数器,其中无效状态为(000,001),组合电路选用与门和与非门等。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。 2.2全加器 (1)设计一个全加器,选用一片74LS138芯片设计电路。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。 2.3 140进制的加法器 (1)设计一个140进制加法器并显示计数,选用两片74L163芯片设计电路。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。

3 设计原理 3.1加法计数器 1.计数器是用来统计输入脉冲个数电路,是组成数字电路和计算机电路的基本时序逻辑部件。计数器按长度可分为:二进制,十进制和任意进制计数器。计数器不仅有加法计数器,也有减法计数器。如果一个计数器既能完成累加技术功能,也能完成递减功能,则称其为可逆计数器。在同步计数器中,个触发器共用同一个时钟信号。 2.时序电路的分析过程:根据给定的时序电路,写出各触发器的驱动方程,输出方程,根据驱动方程带入触发器特征方程,得到每个触发器的次态方程;再根据给定初态,一次迭代得到特征转换表,分析特征转换表画出状态图。 3.CP是输入计数脉冲,所谓计数,就是记CP脉冲个数,每来一个CP脉冲,计数器就加一个1,随着输入计数脉冲个数的增加,计数器中的数值也增大,当计数器记满时再来CP脉冲,计数器归零的同时给高位进位,即要给高位进位信号。 3.2全加器 1.74LS138有三个输入端:A0,A1,A2 和八个输出端Q0-Q7. 3个使能输入端口分是STB,STC,STA,只有当STB=STC=0,STA=1时,译码器才能正常工作,否则译码器处于禁止状态,所有输出端为高电平。 2. 以处理低位进位,并输出本位加法进位。多个全加器进行级联可以得到多位全加器 3.3用集成芯片设计一个140进制的加法器 选取两片74LS163芯片设计140进制加法计数器。74LS163具有以下功能: A 异步清零功能 当0 CR时,其他输入信号都不起作用,由时钟触发器的逻 = = CR时,计数器清零。在0 R复位计数器也即使异步清辑特性知道,其异步输入端信号是优先的,0 = CR正是通过D 零的。

串行并行接口差别

串口与并口的区别 传输方式 串口形容一下就是一条车道,而并口就是有8个车道同一时刻能传送8位(一个位元组)数据。但是并不是并口快,由于8位通道之间的互相干扰。传输时速度就受到了限制。而且当传输出错时,要同时重新传8个位的数据。串口没有干扰,传输出错后重发一位就可以了。所以要比并口快。串口硬盘就是这样被人们重视的。从原理上讲,串行传输是按位传输方式,只利用一条信号线进行传输,例如:要传送一个字节(8位)数据,是按照该字节中从最高位逐位传输,直至最低位。 而并行传输是一次将所有一字节中8位信号一并传送出去。自然最少需要8根信号线。 如果按每次传送的数据流量来看,并行传输要远快于串口,在电脑发展初期,由于数据传输速率不是很高,并行传输还是很快的。 发展趋势 并口传输的发展主要存在以下两个问题: 1、干扰问题。 干扰产生的根本原因是由于传输速率太快,一般达到100M以上,信号线上传递的频率将超过100MHz。想想看,调频收音机的频率也不过 88~108MHz,也就是说,若用并行传输的话,是8根天线放在一起来传输信号,不发生干扰才怪。但如果加强屏蔽,减小信号线间的耦合电容,是可以继续增大传输速率的,不过这将变得不现实,因为这必然导致信号线将耗用更多金属,截面积更大。但这并不是不能解决的问题。 2、同步问题(最主要问题) 并行传输时,发送器是同时将8位信号电平加在信号线上,电信号虽然是以光速传输的,但仍有延迟,因此8位信号不是严格同时到达接受端,速率小时,由于每一字节在信号线上的持续时间较长,这种到达时间上的不同步并不严重,随着传输速率的增加,与8位信号到达时间的差异相比,每一字节的持续时间显得越来越短,最终导致前一字节的某几位与后一字节的几位同时到达接受端,这就造成了传输失败,而且随着信号线的加长这种现象还会越发严重,直至无法使用。——这是并口传输的致命缺点。 串行传输由于只有一位信号在信号线上,没有位同步问题,因此传送频率可以继续提高,当前传输速率已经达到1Gb/s(1000Mb)以上,而且还在提高,而并行传输在100Mb/s左右就停滞不前了,可以预见,串行传输

串行通信的同步传输与异步传输

------分隔线---------------------------- 这里所讲的同步传输和异步传输不同于VC 串口编程时的同步和异步,这里只讲串口硬件层传输的两种模式,有关VC 串口编程的同步模式和异步模式我将另外写一篇文章。 这里所讲的同步和异步是从硬件层级来讲的。首先要知道什么串行传输,串行传输是指数据的二进制代码在一条物理信道上以位为单位按时间顺序逐位传输的方式。串行传输时,发送端逐位发送,接收端逐位接受,同时,还要对所接受的字符进行确认,所以收发双方要采取同步措施(即判断什么时候有数据,数据是什么,什么时候结束传输)。 同步措施有两种,一种在传输的每个(帧)数据前(数据可能是5~8位)加一个起始位,后面加一位校验位及一位或两位的停止位组成一帧数据,这各方式称为异步传输;另一种是在一次传输(可能是多个字节)前加同步字节,可能不止一个字节,最后加校验字节或代表结束标志的字节,这种方式称为同步传输方式。 异步传输 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它

们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII 代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。

通信协议简介及区别(串行、并行、双工、RS232等)

基本的通讯方式有并行通讯和串行通讯两种。 并行通讯:一条信息的各位数据被同时传送的通讯方式称为并行通讯。 并行通讯的特点是:各数据位同时传送,传送速度快、效率高,但有多少数据位就需多少根数据线,因此传送成本高,且只适用于近距离(相距数米)的通讯。 串行通讯:一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。 串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。串行通讯的距离可以从几米到几千米。 根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。信息只能单向传送为单工;信息能双向传送但不能同时双向传送称为半双工;信息能够同时双向传送则称为全双工。 而按照串行数据的时钟控制方式,串行通信又可分为同步通信和异步通信两种方式。 异步通信:接收器和发送器有各自的时钟; 同步通信:发送器和接收器由同一个时钟源控制。 1、异步串行方式的特点 所谓异步通信,是指数据传送以字符为单位,字符与字符间的传送是完全异步的,位与位之间的传送基本上是同步的。异步串行通信的特点可以概括为: ①以字符为单位传送信息。 ②相邻两字符间的间隔是任意长。 ③因为一个字符中的比特位长度有限,所以需要的接收时钟和发送时钟只要相近就可以,不需同步。 ④异步方式特点简单的说就是:字符间异步,字符内部各位同步。 2、异步串行方式的数据格式 异步串行通信的数据格式如图1所示,每个字符(每帧信息)由4个部分组成: ①1位起始位,规定为低电0; ②5~8位数据位,即要传送的有效信息; ③1位奇偶校验位; ④1~2位停止位,规定为高电平1。 3、同步串行方式的特点 所谓同步通信,是指数据传送是以数据块(一组字符)为单位,字符与字符之间、字符内部的位与位之间都同步。同步串行通信的特点可以概括为: ①以数据块为单位传送信息。 ②在一个数据块(信息帧)内,字符与字符间无间隔。 ③因为一次传输的数据块中包含的数据较多,所以接收时钟与发送进钟严格同步,通常要有同步时钟。 4、同步串行方式的数据格式 同步串行通信的数据格式如图2所示,每个数据块(信息帧)由3个部分组成: ①2个同步字符作为一个数据块(信息帧)的起始标志; ②n个连续传送的数据 ③2个字节循环冗余校验码(CRC) 图1 异步串行数据格式图2 同步串行数据格式

SPI同步串行总线原理

三、SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB 的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO 线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。 SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。 [编辑本段] SPI协议举例

串口和并口及引脚定义(精)

串口和并口的区别悬赏分:0 - 解决时间:2006-10-19 10:01 电脑25针和9针的口哪个是串口哪个是并口有什么区别啊提问者: gr_honey - 三级最佳答案RS-232串行接口定义计算机侧为25针公插: 设备侧为25针母插: 引脚定义 Pin Name ITU-T Dir Description 1 GND 101 Shield Ground 2 TXD 103 Transmit Data 3 RXD 104 Receive Data 4 RTS 105 Request to Send 5 CTS 106 Clear to Send 6 DSR 107 Data Set Ready 7 GND 102 System Ground 8 CD 109 Carrier Detect 9 - - RESERVED 10 - - RESERVED 11 STF 126 Select Transmit Channel 12 S.CD ? Secondary Carrier Detect 13 S.CTS ? Secondary Clear to Send 14 S.TXD ? Secondary Transmit Data 15 TCK 114 Transmission Signal Element Timing 16 S.RXD ? Secondary Receive Data 17 RCK 115 Receiver Signal Element Timing 18 LL 141 Local Loop Control 19 S.RTS ? Secondary Request to Send 20 DTR 108 Data Terminal Ready 21 RL 140 Remote Loop Control 22 RI 125 Ring Indicator 23 DSR 111 Data Signal Rate Selector 24 XCK 113 Transmit Signal Element Timing 25 TI 142 Test Indicator PC/AT 机上的串行口是 9 针公插座,引脚定义为: Pin Name Dir Description 1 CD Carrier Detect 2 RXD Receive Data 3 TXD Transmit Data 4 DTR Data Terminal Ready 5 GND System Ground 6 DSR Data Set Ready 7 RTS Request to Send 8 CTS Clear to Send 9 RI Ring Indicator PC/XT 机上的串行口是 25 针公插座,引脚定义为: Pin Name Dir Description 1 SHIELD - Shield Ground 2 TXD Transmit Data 3 RXD Receive Data 4 RTS Request to Send 5 CTS Clear to Send 6 DSR Data Set Ready 7 GND - System Ground 8 CD Carrier Detect 9 n/c - 10 n/c - 11 n/c - 12 n/c - 13 n/c - 14 n/c - 15 n/c - 16 n/c - 17 n/c - 18 n/c - 19 n/c - 20 DTR Data Terminal Ready 21 n/c - 22 RI Ring Indicator 23 n/c - 24 n/c - 25 n/c - PC 并行接口定义 PC 并行接口外观是 25 针母插座: Pin Name Dir Description 1 /STROBE Strobe 2 D0 Data Bit 0 3 D1 Data Bit 1 4 D2 Data Bit 2 5 D3 Data Bit 3 6 D4 Data Bit 4 7 D5 Data Bit 5 8 D6 Data Bit 6 9 D7 Data Bit 7 10 /ACK Acknowledge 11 BUSY Busy 12 PE Paper End 13 SEL Select 14 /AUTOFD Autofeed 15 /ERROR Error 16 /INIT Initialize 17 /SELIN Select In 18 GND Signal Ground 19 GND Signal Ground 20 GND Signal Ground 21 GND Signal Ground 22 GND Signal Ground 23 GND Signal

STM32 USART同步异步串行通讯

慢慢的看一下,应该容易理解. 在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收 数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。 1. 异步传输(Asynchronous Transmission):异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在 任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息

的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。 2. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。 数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方

习题11-串行接口

习题十一串行接口 11.1 为什么串行接口部件中的4个寄存器可以只用1位地址来进行区分? 【答】复位后第一次用奇地址端口写入的值送模式寄存器;然后写入同步字符;然后写控制字。 读奇地址则读状态寄存器。所以奇地址对应模式、控制、状态寄存器,通过读写信号和时序来区分。偶地址对应数据输入、输出缓冲器,通过读写信号来区分。 11.2在数据通信系统中,什么情况下可以采用全双工方式,什么情况下可用半双工方式?【答】如果一个数据通信系统中,有两个信道可以采用全双工方式,只有一个信道只能采用半双工方式。 11.3 什么叫同步通信方式?什么叫异步通信方式?它们各有什么优缺点? 【答】串行通信以同步信息封装的帧为单位传输。 同步通信,一帧可包含多个字符,要求收发双方传输速率严格一致,帧之间填充同步信息以保证发收双方随时同步,通信效率高。 异步通信,一帧只包含一个字符,帧之间为空闲位,每一帧都同步一次,由于帧小,发收双方传输速率允许有一定误差,但通信效率低。 11.4 什么叫波特率因子?什么叫波特率?设波特率因子为64,波特率为1200,那么时钟频率为 多少? 【答】波特率指码元(波形)传输速率——单位时间内传输的码元个数,单位是Baud。 波特率因子是发送/接收时钟频率与波特率的比值。 时钟频率=64×1200=76800Hz 11.5 标准波特率系列指什么? 【答】标准波特率系列为110,300,600,1200,1800,2400,9600,19200 11.6 设异步传输时,每个字符对应1个超始位、7个信息位、1个奇/偶校验位和1个停止位, 如果波特率为9600,刚每秒能传输的最大字符数为多少个? 【答】即9600/10=960个 11.7 在RS-232-C标准中,信号电平与TTL电平不兼容,问RS-232-C标准的1和0分别对应什 么电平?RS-232-C的电平和TTL电平之间通常用什么器件进行转换? 【答】 RS-232-C将-5V—-15V规定为“1”,将+5V—+15V规定为“0”。将TTL电平转换成RS-232-C电平时,中间要用到MC1488器件,反过来,用MC1489器件,将RS232-C电平转换成TTL电平。 11.8 从8251A的编程结构中,可以看到8251A有几个寄存器和外部电路有关?一共要几个端口 地址?为什么 【答】数据发送寄存器、数据接收寄存器,状态寄存器和命令寄存器。一共2个端口地址。数据发送寄存器(只写)和接收寄存器(只读)共用一个端口地址。命令寄存器(只写)和状态寄存器(只读)共用一个端口地址。 11.9 8251A内部有哪些功能模块?其中读/写控制逻辑电路的主要功能是什么? 【答】8251A有一个数据输入缓冲寄存器和一个数据输出缓冲寄存器,一个发送移位寄存器和一个接收移位寄存器,一个控制寄存器和一个状态寄存器,一个模式寄存器和两个同步字符寄存器等功能模块。读/写控制逻辑电路用来配合数据总线缓冲器工作。其主要功能有:1)接收写信号WR,并将来自数据总线的数据和控制字写入8251A;2)接收读信号RD,并将数据或状态字从8251A送往数据总线;3)接收控制/数据信号C/D,将此信号和读/写信号合起来通知8251A,当前读/写的是数据还是控制字、状态字;4)接收时钟信号CLK,完成8251A的内部定时;5)接收复位信号RESET,使8251A处于空闲状态。 11.10 什么叫异步工作方式?画出异步工作方式时8251A的TxD和RxD线上的数据格式。【答】串行工作方式分为两种类型,一种叫同步方式,另一种叫异步方式。异步工作方式时,两个字符之间的传输间隔是任意的,所以,每个字符的前后都要用一些数位来作同步。在

一种新型基于高速串行通信的多通道同步采样技术

DOI:10.3969/j .issn.1000-1026.2012.09.015一种新型基于高速串行通信的多通道同步采样技术 姜 雷,周华良,郑玉平,夏 雨,姚吉文,吴通华 (国网电力科学研究院/南京南瑞集团公司,江苏省南京市210003 )摘要:微机型高压继电保护装置需要实时采样和处理多通道交流电气量数据,多通道采样数据的 同步性和数据处理的实时性是影响保护性能的2个重要因素。文中针对以往同步采样及数据接口方式进行了改进,提出了一种基于高速串行通信的多通道同步采样技术,硬件上进一步保证数据采 样同步性, 同时提高采样数据传输、存储的快速性和并发性。该技术具有很好的扩展性和高可靠性,可以满足不同微机型高压继电保护装置,尤其是模拟采样回路通道数需求较多的场合,目前已经在某系列微机型高压继电保护装置上得到验证并取得实际工程应用。关键词:继电保护;同步采样;高速串行;多通道 收稿日期:2011-05-24;修回日期:2011-12- 21。0 引言 现代高压继电保护装置的交流信号分析理论和 保护算法大多建立在交流同步采样基础上[ 1- 4]。因此,同步采样的质量及采样数据处理的实时性对于 实现保护逻辑至关重要,是影响高压继电保护装置保护性能的2个重要因素。不考虑微处理器运算速度,对采样系统来讲采样频率越高、转换速度越快、采样精度越高,越有利于提高保护响应的准确性和快速性。在不增加硬件成本的前提下,采用交流同 步采样技术可提高交流采样的同步性[5- 6]。然而,如 何改进硬件电路也是必须考虑的问题。继电保护装 置的多通道同步采样往往采用多路选择器和模拟/ 数字(A/D)转换器组合的方式实现[7] ,并且多使用并行数字接口方式向数字信号处理器(DSP) 传输数据。这种方法固然能够实现同步采样, 但是在模拟采样回路通道数比较多的场合,多路选择器对采样同步性的影响会更加明显,同时A/D转换器与DSP的数据接口通常使用并行总线方式实现,此种接口 在A/D转换器数量较多时数据传输效率也会降低。因此,研究如何进一步提高采样的同步性以及高效、可靠地获取并传输采样数据对于提高保护性能具有重要意义。针对这一现实技术需求,本文提出了一种新型的基于高速串行通信的多通道同步采样技术,并详细论述了该技术在微机型高压继电保护装置中的设计与实现。实践证明,该技术方法能够保证采样数据的同步性和数据传输的可靠性,提高保护在交流采样方面的处理性能。 1 基于高速串行通信的多通道同步采样系统总体技术方案 继电保护装置对交流采样设计的基本要求是具有同步性、实时性、多通道和高精度。为了实现这一设计目标,采用现场可编程门阵列(FPGA) 和若干片16位高精度同步A/D转换器构成高速串行多通道同步采样系统, 原理框图如图1所示。图1 基于高速串行通信的多通道同步采样系统 Fig.1 Multi-channel synchronous sampling  systembased on high-sp eed serial communication此方案中采用的A/D转换器为ADI公司的 16位、8通道同步采样器件AD7606。此器件内置模拟输入钳位保护、二阶抗混叠滤波器、跟踪保持放 大器、16位电荷再分配逐次逼近型A/D转换器,以及灵活的数字滤波器和2.5V基准电压源、 基准电压缓冲等。AD7606采用5V单电源供电,可以处理±10V和±5V真双极性输入信号,同时所有通道均能以高达每秒20万个采样点的吞吐速率采样。其中,输入钳位保护电路可以耐受最高达±16.5V 的电压。此A/D转换器的抗混叠滤波器的3dB截 — 28—第36卷 第9期2012年5月10日Vol.36 No.9 May  10,2012

相关主题