3DG6晶体管1只,3AX31晶体管1只,47KΩ微调电阻1只,100μF/3V电解电容1只,印制线路板1块,5号电池1节,1.5V/0.1A小电珠1只。
电子频闪灯是由晶体管组成的互补多谐振荡器,电路如图2-1所示,通电后产生自激振荡,驱动小电珠HL不断闪烁。
接通电源后,电流即通过电阻R向电容C充电,当充电到一定程度时,晶体管VT1导通,同时,VT2亦导通,使小电珠HL发光。
此时,电容C放电,A点电位下降,VT1得不到正常工作偏压而截止,VT2也随之截止,HL不发光。
此时电路恢复初始状态,电流通过R再次向C充电……这样周而复始,使HL不断闪烁。
(R表示该电阻值可通过调整后确定)晶体管VT1、VT2要分别选用β大于30的金属壳三极管3DG6、3AX31,或塑封三级管9011、9012,R微调电阻调节时要注意有一定的电阻值存在,不要调到电阻很小的值,否则易损坏三极管。
(四)调试将印制板的正、负端的引出线分别与1.5V电池的正、负端连接,此时可看到小电珠不断闪烁。
若小电珠不闪,应仔细检查电路是否有错焊或假焊;若小电珠常亮不闪,则说明R值太小,造成充放电时间太短,使HL闪烁频率太快,使人眼无法看出它在闪烁,只认为常亮而不闪。
这时只需用小螺丝刀调节47KΩ微调电阻,通过调节可使小电珠达到理想的频闪效果。
(使用微调电阻时,千万不要将电阻值调至零)本LED广告彩灯电路采用两只NPN三极管8050驱动多只LED组成,其工作原理是:1、每个8050三极管可以驱动八到十六个发光二极管。
只有相同发光电压(不同颜色的发光电压一般不同)的发光二极管才可以并联使用。
可以将发光二极管接成需要的图案,表达设计者的意图。
2、彩灯闪烁的周期是:T=0.7×(R1+R3)×C2+0.7×(R2+R4)×C1 根据闪烁快慢要求选择R1,R2,R3,R4,C1,C2的参数。
调节电位器R1、R2的大小,可以改变闪烁速度。
3、电压过高会烧坏发光二极管。
工作电压从3v开始调大,当提供的电源电压高于5v后应当串入一个2.2~27欧姆的电阻作为限流电阻,以免烧坏发光二极管。
这是一个由三只三极管组成的循环驱动器。
它的电路如图 1 所示。
其工作原理是:当电源一接通,三只三极管就要争先导通,但由于元器件有差异,只有某一只管子最先导通。
假如VT1 最先导通,那么VT1 集电极电压下降,使电容C1 的左端接近零电压,由于电容器两端的电压不能突变,所以VT2 基极也被拉到近似零电压,使VT2 截止。
VT2 集电极为高电压,那么接在它上面的发光二极管就亮了。
此刻VT2 集电极上的高电压通过电容器C2 使VT3 基极电压升高,三极管VT3 也将迅速导通。
因此在这一段时间内,VT1 与VT3 的集电极均为低电压,只有接在VT2 集电极上的发光二极管亮,而其余两只发光二极管不亮。
随着电源通过电阻R3 对C1 的充电,使三极管VT2 基极电压逐渐升高,当超过0.6 伏时,VT2 由截止状态变为导通状态,集电极电压下降,发光二极管熄灭。
与此同时三极管VT2 集电极电压的下降通过电容器C2 的作用使三极管VT3 的基极电压也下跳,VT3 由导通变为截止。
接在VT3 集电极上的发光二极管就亮了。
如此循环,电路中三只三极管便轮流导通和截止,三只发光二极管就不停地循环发光。
全部电阻均为1 /8W 碳膜电阻。
R2 、R4 、R6 为 2.7k (红、紫、红);R1 、R3 、R5 为13k (棕、橙、橙)或15k (棕、绿、橙)。
电解电容器全部为33μF ~100μF 。
电路工作原理本电路采用高增益pnp型锗管vt3,vt4组成多谐振荡器,有两级反相器首尾连接,级间利用电容c3,c4耦合,其工作周期为1s!三极管应选择集电极电流大于50ma得9012或9015,发光管应选择高亮度得管子!若想改变闪烁得速度,可以调整c3,c4得容量,也可以用微调代替r3,r4,条好后换上相应数值得电阻即可!在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。
在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。
三极管多谐振荡器的电路原理图:下面我们将简要分析该电路的工作原理:上图所示为结型晶体管自激或称无稳态多谐振荡器电路。
它基本上是由两级RC藕合放大器组成,其中每一级的输出藕合到另一级的输入。
各级交替地导通和截止,每次只有一级是导通的。
从电路结构上看,自微多谐振荡器与两级Rc正弦振荡器是相似的,但实际上却不同。
正弦振荡器不会进入截止状态.而多谐振荡器却会进入截止状态。
这是借助于Rc耦合网络较长的时间常数来控制的。
尽管在时间上是交替的,可是这两级产生的都是矩形波输出。
所以多谐振荡器的输出可取自任何一级。
电路上电时,Vcc加到电路,由于两只三极管都是正向偏置的故他们处于导通状态,此外,还为藕合电容器Cl和C2充电到近于Vcc电压。
充电的路径是由接地点经过晶体管基极,又通过电容器而至Vcc电源。
还有些充电电流是经过R1和R2的,从而导致正电压加在基极上,使晶体管导电量更大,因而使两级的集电极电压下降。
两只晶体管不会是完全相同的,因此,即使两级用的是相同型号的晶体管和用相同的元件值,一个晶体管也会比另一个起始导电量稍微大些。
假定Ql的导电量稍大些,由于Ql的电流大,它的集电集电压下降就要比Q2的快些。
结果,被通过电阻器R2放电的电容器C2藕台到Q2基极的电压就要比由C1和Rl藕合到Ql基极的电压负值更大些。
这就使得Q2的导电量减少,而它的集电极电压则相应地增高了。
Q2集电极升高的电压,是作为正电压藕合回Ql基极的。
这样,Q1导电更多,从而引起它的集电极电压进一步下降,由于C2还在放电。
故驱使Q2的基极电压向负的增大。
这个过程继续到最终Q2截止,而Ql在饱和状态下导通为止。
此时,电容器C2仍然通过电阻器R对接地点放电。
Q2级保持截止直至C2已充分放电使得Q2的基极电压超过截止值为止。
然后Q2开始导通,这样就开始了多谐振荡器的第二个半周。
由于Q2开始导通,它的集电极电压就开始下降,导致电容器Cl通过电阻器Rl开始放电,这样,加到Q1基集的是负电压。
Q1传导的电流因此而减小,并引起Ql集电极电压升高。
这是作为正电压藕合到Q2基极的,于是Q2传导的电流就更大。
就象前半周的工作一样,这是起着正反馈作用的,并持续到Ql截止,Q2在饱和状态下导通为止。
Q2保留在截止状态,直至C1已充分放电,Ql开始脱离截止状态为止。
此时,完整的周期再次开始。
好一级导通时间的长短,取决于另一级截止的时间。
也就是取决于C1Rl和C2R2的时间常数RC。
时间常数越小转换作用也就越快,因此多谐振荡器的输出频率就越高。
就上述的电路来说,两个RC网络的时间常数相同,两个晶体管的导通和截止周期是相等的,故称之为对称的自微多谐振荡器。
当然我们也可以调整C1R1和C2R2不等,使得两只三极管的导通时间不同。
在明白了多谐振荡器的基本原理后,我们就可以利用这个电路控制两个发光二极管交替的闪烁了。
我们可以把Q1和Q2的集电极作为振荡器的输出驱动两个发光管。
具体的电路如下:R1、R2分别为发光二极管D1和D2的限流电阻,这里为420欧姆,取值越小LED将越亮。
R3和R3取值11K。
每个灯点亮的时间可以通过对R4*C1,R5*C2用公式T=0.693*R*C计算导通时间得到。
读者可以取不同的值得到不同闪烁的频率,两边的点亮时间可以不同。
夜晚离开房间,总要先关掉照明灯。
可如果灯开关不在门口,那么关上灯再摸黑走到门口,十分不方便。
本文介绍的一种开关仅用9个元件,可方便地加在原来的开关上,使您的灯在关掉后延时几十秒钟,让您有充足的时间离开房间,免受摸黑之苦。
工作原理:电路原理如下图所示。
A、B分别接在原开关两端。
合上开关S时,交流电的正半周经D6、R2、R1、D1和可控硅控制极,触发可控硅导通;交流电的负半周经D4、R2、R1、D1和可控硅控制极,触发可控硅导通。
可控硅导通后,相当于短路C、D两点,因而A、B两点也经过二极管和导通的可控硅闭合起来。
此时照明灯亮。
断开开关S后,由于电容C1经R1、D1和可控硅控制极放电,使可控硅仍有触发电流维持导通。
放电电流逐渐减小,一段时间后,可控硅截止,灯灭。
此电路延时时间约为40~50秒。
元件选择:可控硅选最大电流1A、耐压400V的。
D1、D3~D6可用1N4004。
C1用耐压630V、35μF的彩电电容。
如果合上开关S灯不亮,可适当减小R1的阻值本文介绍的这种延时照明灯非常简单,安装也十分方便,将它直接连接于普通开关的两端即可。
使用时,打开开关电灯点亮,关灯后由于延时电路的作用使电灯仍亮几秒钟后自动熄灭。
本电路安全可靠,适合初学者自制。
电路原理:该延时照明灯的电路如附图所示。
延时电路如虚线框内所示。
图中K为拉线开关或墙壁开关,当K闭合后,该延时电路不工作,电灯处于正常的发光状态。
当K被关断后,该电压一方面经R1向电容C充电,由于在C的充电期间没有电流流过R2,则三极管V一直处于截止状态;另一方面,该电压经R3、R4向可控硅SCR提供触发电压,使可控硅处于导通状态,因此在关灯后电灯亮一段时间。
当电容C被充足电后,使三极管V由截止转为导通状态,将可控硅SCR关断,电灯也就熄灭了。
本电路关灯延时期间,延时时间由R1、C的取值来确定,读者也可根据各自需要自行确定。
本电路中的可控硅,笔者选用的为单向可控硅,在关灯延时期间电灯的亮度约为开灯时亮度的一半,以适合人们的视觉上的需要,同时又可节能。
电路制作:图中单向可控硅SCR选用MCR100-8,耐压须为600V以上。
灯泡的功率不大于100W为宜。
二极管VD为1N4007,V为C1815。
电阻均为1/8W碳膜电阻。
制作时,用一小块电路板将图中虚线框内各元器件焊装上。
最好将本电路装在拉线开关底部凹槽内,用胶水粘牢并将引线接至开关两接线端即可。