1、 活性炭来源
活性炭产品种类很多,按生产原料不同可分为:煤基活性炭、木质活性炭、果壳活性炭和、
合成活性炭等。一般活性炭产品的比表面积可达500-1200m2/g.
按孔径分:
国际纯粹与应用化学联合台(IuPAcl972)依据不同尺寸孔限中分子吸附的不同,将孔分为三类:
w>50nm的为大孔
2nm<W<50nm的为中孔;
w<2nm的为微孔。
2、 活性炭再生
a) 必要性
活性炭再生是活性炭制备的重要组成之一。活性炭使用一段时间后会吸附饱
和,从而丧失吸附能力成为“废炭”。若直接将吸附饱和的炭丢弃不仅会增加
应用成本,还可能会导致二次污染,因此从经济和环保两方面考虑,活性炭的
“再生”意义重大。
b) 方法分类及其优缺点
热再生法
热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外
加能源加热,投资及运行费用较高。
生物再生法
催化再生法
微波再生法
c) 具体工艺(微波再生,重在流程)
活性炭补充:
微波再生(机器约30万一台)
是在热再生法的基础上发展起来的新型活性炭再生技术
通过SEM照片可以很明显的看出原始活性炭与微波改性后的活性炭的差别.原始活性炭表面
杂质较多,并且很多孔道被杂质堵塞;经微波处理后,活性炭表面的杂质被去除,孔道更加通畅
从而保证了甲苯更加容易进入活性炭的中孔和微孔,也就增加了其吸附容量.另外,从图中b、
c、d可以看出,随着微波加热温度的提高,活性炭的孔径明显变小,这是由于微波加热迅速升温
而导致的炭骨架收缩.在这种情况下,会有一部分孔道因收缩而失去吸附能力,从而导致高温
改性的活性炭物理吸附能力的下降,但由于高温改性会增加碱性基团的含量,因此相应的化学
吸附能力会有所提高.实验中850℃改性的活性炭吸附能力最高就是证明.但由于到达一定温
度(一般高于1 000℃)后活性炭表面酸性基团基本分解完毕,此时的活性炭化学吸附能力不会
再有明显提高,但继续升温会导致孔道不断变小,从而导致吸附能力下降,因此一味提高改性
温度是不经济也是不合理的.
4. 1
微波对活性炭的改性作用
首先活性炭是一种很好的微波吸收材料[54],它的吸附性能主要由它的孔隙结构和表
面化学性质决定,活性炭本身能够有效地吸收微波能量,会烧失一部分炭成分,从而使活性
炭的孔径扩大。另外,在微波的辐射下,体系温度迅速升高,以致活性炭孔道中吸附焦化废
水的有机物由于在高温挥发或炭化分解,最终矿化产生CO2、水蒸气等气体重新造孔,从而
使活性炭恢复到原来的吸附活性,再次吸附物质,即活性炭再生[55-57]微波再生的活性
炭接近于单层吸附,原因是微波使活性炭的孔容发生变化的主要是中孔,这些再生的中孔有
利于焦化废水中的小分子物质进入活性炭内部; 其次,微波辐射对活性炭表面结构也有一定
的影响: 酸性官能团、酚羟基和羧基大量减少,碱性官能团增加,这些变化均有利于物质的
吸附
4. 2
微波与活性炭协同作用
微波-活性炭处理效果并不是微波处理效果和活性炭处理效果的简简单单加成。而是难
降解的有机物分子在热运动的作用下,被吸附在活性炭的表面,随着微波辐射的作用,在温
度在 1000℃ 左右的活性中心上,被活性炭迅速热解氧化。即微波和活性炭协同作用的处理
效果远远大于先微波后活性炭吸附处理的效果或者先活性炭吸附再微波处理的效果。
在
这种情况下,会有一部分孔道因收缩而失去吸附能
力,从而导致高温改性的活性炭物理吸附能力的下
降,但由于高温改性会增加碱性基团的含量,因此相
应的化学吸附能力会有所提高.
结果证明,微波再生后活性炭
吸附能力大于电炉再生(电热再生)后活性炭的吸附能力;
微波活性炭再生设备(Phone5)与常规电热再生进行了比较,结果证明,微波再生后活性炭可保持较
强的吸附能力,而电炉再生后活性炭的吸附能力则大幅降低。
word.
热再生(要与微波再生做一个对比)
加热再生法由于工艺流程简单、可有效分解多种吸附质,而且再生较为彻底,是发展历史最
长且应用最广泛的再生方法。自 20 世纪 70 年代中期以来,随着热再生装置的不断发展,
活性炭热再生法也取得了长足发展,热再生炉在各个领域均有应用。热再生炉有多种,包括
多层炉、回转炉、隧道炉和液态化炉等。这些再生炉各有特色,如适合大规模再生的是回转
炉和多层炉; 适合粉炭再生,热效率较高的是近年来出现的液态化炉。
优缺点:
热再生具有再生效率高、再生的时间短等优点,但也具备炭损失和炭比表面积减小等缺点,
另外该再生法所需的设备复杂,费用较高,也是该方法在实验室研究中不常用的主要原因.
电化学再生:
生物再生
活性炭达到吸附饱和后,将模拟废水倒出,向锥形瓶中加入一定体积的再生菌液和无机盐培养
基,保持总体积为200mL,于25℃摇床好氧生物再生,以未加再生菌液的试样作为对照
生物再生法是利用经驯化过的菌种处理失效的活性炭,使吸附在活性炭上的有机物降解
并进一步消化分解成和恢复其吸附性能的过程。该法综合了物理吸附的高效性和生
物处理的经济性,充分利用了活性炭的物理吸附作用和微生物的生物降解作用。
胞外酶机制:
作出假设认为生物再生由胞外酶作用而产生,认为由微生物释放出来的胞外酶
向孔内扩散并与吸附的底物发生反应。代谢物较低的吸附性会使底物水解和酶的代谢物发生
解吸(活性炭孔径应大于10nm)2nm<W<50nm的为中孔.
参考文献:
[ 1]蒋剑春,孙康.活性炭制备技术及应用研究综述[J].江苏南京:林产化学与工业,
2017,37(1):1-13.
[58] 蒋文举,江霞,朱晓帆,等.微波加热对活性炭表面基团及吸附性能的影响[J]. 林
产化学与工业,2003,24( 1) : 39-42.
Using Microwave Heating To Improve the Desorption Efficiency ofHigh Molecular Weight VOC
from Beaded Activated Carbon
微波改性活性炭对甲苯吸附性能的实验研究
曹晓强1,2,黄学敏1,2,刘胜荣3,曹 利1,2
待解决问题:
✓ 电解池阴阳极:惰性电极
✓ 电解池电解液:通常选择盐溶液,可以是硫酸钠
湿式氧化再生
✓ 各种方法的适用范围:水中有机物、嗅味物质、特别是合成有机物的有效手段。
✓ 表面碱性基团:可以通过在不同气体中加热活性炭的方法去除表面氧而获得碱性特征,
具 有较强离子交换性能的碱性表面
.
催化再生(光催化)
光催化再生法是用一定范围的波长的光,在光催化剂的催化条件下,通过光化学反应使吸
附在饱和活性炭上的有机污染物降解,恢复活性炭的吸附性能,得到再生.目前研究最多的
光催化剂TiO2,,用TiO2,光催化再生处理印染废水的活性炭,-"}.TiO,与饱和活性炭的结合,
首先可以增强净化能力,其次是该方法可以将某些反应的副产物全部降解消失.同时,利用
TiO,与其他催化剂相结合,增加活性炭与光催化剂之间的负载力.光催化再生法对光的条件要
求较多,在不同的光照下的催化效果不同,对活性炭再生的效果也不同,且光催化剂负载量
也有相应的影响
再生方法 优势 劣势 适用情况
热再生法
再生效率高、 再生的时间短、 广泛应用于工业生产 炭损失和炭比表面积减小, 再生能耗高 有机污染物
电化学再生法
操作简便、再生效率较高、 多次再生活性炭吸附效率高 再生能耗高 无机金属离子,
有机物
生物再生法
成本低、再生效率稳定 再生效率不高 有机物
微波再生法
节能高效、 再生活性炭吸附效率高 设备费用高 有机物
活性炭再生方法 优势 劣势
热再生法
再生效率高、
再生的时间短、
广泛应用于工业生产
炭损失和炭比表面积减小,
再生能耗高
电化学再生法
操作简便、再生效率较高、
多次再生活性炭吸附效率高
再生能耗高
生物再生法
成本低、再生效率稳定 再生效率不高
微波再生法
节能高效、
再生活性炭吸附效率高
设备费用高
最新文件 仅供参考 已改成word文本 。 方便更改