当前位置:文档之家› 各类变速箱的基本工作原理

各类变速箱的基本工作原理

手动变速箱的基本工作原理一、变速箱的作用发动机的物理特性决定了变速箱的存在。

首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。

比如,发动机最大功率出现在5500转。

变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。

理想情况下,变速箱应具有灵活的变速比。

无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。

二、CVT无级变速箱有着连续的变速比。

其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。

现在,改进的设计使得CVT的使用已比较普遍。

国产AUDI 2.8 CVT:变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。

奔驰C级Sport Coupe 6速手动变速箱一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。

三、简单的变速箱模型为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。

轴和齿轮(红色)叫做中间轴。

它们一起旋转。

轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。

轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。

车轮转动会带着花键轴一起转动。

齿轮(蓝色)在花键轴上自由转动。

在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。

齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。

1档挂进1档时,套筒就和右边的齿轮(蓝色)啮合。

见下图:如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上。

在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。

当套筒在两个齿轮中间时(第一张图所示),变速箱在空挡位置。

两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的。

四、真正的变速箱如今,5档手动变速箱应用已经很普遍了,以下是其模型:换档杆通过三个连杆连接着三个换档叉,见下图:在换挡杆的中间有个旋转点,当你拨入1档时,实际上是将连杆和换档叉往反方向推。

你左右移动换档杆时,实际上是在选择不同的换档叉(不同的套筒);前后移动时则是选择不同的齿轮(蓝色)。

倒档 通过一个中间齿轮(紫色)来实现。

如图所示,齿轮(蓝色)始终朝其他齿轮(蓝色)相反的方向转动。

因此,在汽车前进的过程中,是不可能挂进倒档的,套筒上的齿和齿轮(蓝色)不能啮合,但是会产生很大的噪音。

上图:同步装置同步是使得套筒上的齿和齿轮(蓝色)啮合之前产生一个摩擦接触,见下图齿轮(蓝色)上的锥形凸出刚好卡进套筒的锥形缺口,两者之间的摩擦力使得套筒和齿轮(蓝色)同步,套筒的外部滑动,和齿轮啮合。

什么是“同步器”?由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个"同步"问题。

两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。

因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。

但这个操作比较复杂,难以掌握精确。

因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。

同步器有常压式和惯性式。

目前全部同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。

接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。

锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。

当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。

AMT变速器技术与原理AMT是英文Automated Mechanical transmission的缩写,中文名直译为自动机械式变速器,也有称电控机械式自动变速器的。

该技术是指在不改变原车变速箱主体结构的基础上,通过加装微电脑控制的电动装置取代原来由人工操作完成的换档动作,实现换档全过程的自动化。

AMT的结构相对于其余几种自动变速器来说要简单一些,它是在手动基础上进行改造,主要改变手动换挡操作部分。

即在原有手动变速器的结构上加装微机控制的自动换挡操作机构,来实现换挡的自动化。

也就是说AMT的箱体及内部结构和传统手动变速器一样,只是增加了自动机械执行机构和换档程序,只是它没有离合器踏板,只有制动和油门两个踏板。

与原来的换档过程不同的是,AMT相当于有一个电脑控制的机器人来替代人的操作,驾驶员也可以在手动和全自动两种换档模式中任选。

液压式AMT的关键部件主要由传感器、电脑模块和执行器三部分组成。

运作过程概括为以下步骤:1)电脑模块通过读取传感器信号来确定当前车辆的工作状况,如车速信号,油门开度的大小信号等2)由换档杆的触点得到驾驶员在手动模式下或模块计算自动模式下给出的换档命令。

3)模块读取换档命令后进行安全分析从而对命令进行后期处理。

4)通过执行器的电液单元控制离合器的开与闭以及变速箱中的不同齿轮的啮合。

通过这4 步就完成了一整套换档工作。

总的来说,相对于传统手动变速器,AMT的结构基本相似。

只是为了实现自动换挡,加装了一些相应的装置。

把原来的手动换挡转变成了自动换挡。

它的主要的核心部份在于电脑控制模块,电脑模块收集一些换挡的参考信号,如车速,油门开度,驾驶员选择的驾驶模式等,然后通过运算处理后,把换挡信号发给执行机构,执行机构接到指令后,自动操作换挡拨叉以及离合器,从而实现换挡。

总结:AMT发展已经有一段历史,但应该讲应用还不如传统的AT那么的普遍。

他的结构较其余几种自动变速器简单,价格也介于手动变速器和传动自动变速器之间。

ATM相对其余几种自动变速器的优点在于它的效率比较高同时价格相对便宜,主要问题是换挡的平顺性,换挡时会有一定的顿挫感。

AT自动变速箱工作原理自动变速器能够根据发动机负荷和车速等情况自动变换传动比,使汽车获得良好的动力性和燃料经济性,并减少发动机排放污染。

自动变速器操纵容易,在车辆拥挤时,可大大提高车辆行驶的安全性及可靠性。

电子控制自动变速器通常由液力变矩器、行星齿轮变速系统、换挡执行器、液压操纵系统、电子控制系统五部分组成。

液力变矩器的工作原理目前轿车上广泛采用由泵轮、涡轮和导轮组成的单级双相三元件闭锁式综合液力变矩器。

泵轮和涡轮均为盆状的。

泵轮与变矩器外壳连为一体,是主动元件;涡轮悬浮在变矩器内,通过花键与输出轴相连,是从动元件;导轮悬浮在泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。

发动机启动后,曲轴带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。

这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。

从涡轮流出工作液的速度v可以看为工作液相对于涡轮叶片表面流出的分速度ω与随涡轮一起转动分速度u的合成。

当涡轮转速比较小时,从涡轮流出的工作液是向后的,工作液冲击导轮叶片的前面。

因为导轮被单向离合器限定不能向后转动,所以导轮叶片将向后流动的工作液导向向前推动泵轮叶片,促进泵轮旋转,从而使作用于涡轮的转矩增大。

随着涡轮转速的增加,分速度u也变大,当ω与u的合速度v开始指向导轮叶片的背面时,变矩器到达临界点。

当涡轮转速进一步增加时,工作液将冲击导轮叶片的背面。

因为单向离合器允许导轮与泵轮一同向前旋转,所以在工作液的带动下,导轮沿泵轮转动方向自由旋转,工作液顺利地回流到泵轮。

当从涡轮流出的工作液正好与导轮叶片出口方向一致时,变矩器不产生增扭作用(这时液力变矩器的工况称为液力偶合工况)。

液力变矩器靠工作液传递转矩,比机械变速器的传动效率低。

在液力变矩器中设置锁止离合器,可以在高速工况下将泵轮与涡轮锁在一起,实现动力直接传递,提高变矩器的传动效率。

行星齿轮变速器的工作原理 液力变矩器虽能传递和增动机转矩,但变矩比不大,变速范围不宽,远不能满足汽车使用工况的需要。

为进一步增大扭矩,扩大其变速范围,提高汽车的适应能力,在液力变矩器后面又装一个辅助变速器——有级式齿轮变速器。

该齿轮变速器多数是用行星齿轮变速的。

行星齿轮变速器是由行星齿轮机构及离合器、制动器和单向离合器等执行元件组成。

行星齿轮机构通常由多个行星排组成.行星排的多少与档数的多少有关。

星齿轮变速器的换档执行元件包括换挡离合器、换挡制动器和单向离器。

换挡离合器为湿式多片离合器,当液压使活塞把主动片和从动片压紧时,离合器接合;当工作液从活塞缸排出时,回位弹簧使活塞后退,使离合器分离。

换挡制动器通常有两种形式:一种是湿式多片制动器,其结构与湿式多片离合器基本相同,不同之处是制动器用于连接转动件和变速器壳体,使转动件不能转动。

换挡制动器的另一形式是外束式带式制动器。

行星齿轮变速器的单向离合器与液力变矩器中的单向离合器结构相同。

液力机械传动式自动变速器的控制液压自动操纵系统通常由供油、手动选挡、参数调节、换挡时刻控制、换档品质控制等部分组成。

供油部分根据节气门开度和选挡杆位置的变化,将油泵输出油压调节至规定值,形成稳定的工作液压。

在液控液动自动变速器中,参数调节部分主要有节气门压力调节阀(简称节气门阀)和速控调压阀(又称调速器)。

节气门压力调节阀使输出液压的大小能够反映节气门开度;速控调压阀使输出液压的大小能够反映车速的大小。

换挡时刻控制部分用于转换通向各换挡执行机构(离合器和制动器)的油路,从而实现换挡控制。

锁定信号阀受电磁阀的控制,使液力变矩器内的锁止离合器适时地接合与分离。

换挡品质控制部分的作用是使换挡过程更加平稳柔和。

C VT变速箱结构及工作原理随着汽车工业的飞速发展,汽车新技术的不断使用,在中又一项新技术得到车界关注,那就是—CVT(Continuously Variable Transmission)无级变速器技术。

CVT 可以说是最理想的汽车变速器,因为从原始的橡胶带无级变速器开始,到有级的齿轮变速器 过度,再到现代的钢带无级变速器,百年大回转说明只有无级变速器才是汽车变速器的终极目标。

相关主题