当前位置:文档之家› 钢轨焊缝热处理系统的应用1汇总

钢轨焊缝热处理系统的应用1汇总

1 摘 要 伴随着我国铁路建设的步伐加快,国铁路运量、载重及行车速度的不断提高,对钢轨焊接接头质量也提出了更高的要求。原来国内在线上焊接普遍采用的铝热焊已逐渐显现出不能很好的满足现代高速铁路对焊缝的需求,各铁路局正逐步引进线上移动式焊轨车,采用闪光焊代替原来的焊接工艺。然而焊后热处理还都沿用的原有的现场铝热焊焊后热处理设备(火焰加热处理),这种老式的火焰加热方式采用氧气—乙炔火焰加热,属于热传导加热方式,靠氧气—乙炔焰的热量从钢轨外表面向内部传导,透热性较差、速度较慢、工序繁琐复杂、劳动强度大、劳动条件差,且这种方法受认为因素影响较大,加热温度不易控制、效果很不稳定。在加上这种热处理方式加热后使其暴漏在大气中自然冷却,未对焊缝部分进行强制冷却,表面硬度相比全长表面淬火的母材也出现明显降低,加上钢轨经焊接成长轨后,在其焊缝区熔合线上由于曾受过熔化过程和高温的影响,在热熔合的过热区会出现金属组织尤其是奥氏体晶粒粗化,产生焊接残余应力及硬度分布不均等问题,从而使接头冲击韧性下降,引起马鞍型磨耗,缩短钢轨的使用寿命,危机行车安全。 为了解决这种缺陷,必须对焊缝进行合理的正火处理,使焊缝经正火后,晶粒重新细化,钢轨塑形、韧性大幅度提高,硬度分布均匀合理。保证钢轨使用质量、延长钢轨使用寿命、保障线路的行车安全。 2

第一章 绪论 1.1线上焊缝热处理的现状及发展线上焊缝热处理的意义 伴随我国铁路运量、载重及行车速度的不断提高,对钢轨焊接接头质量也提出了更高的要求。钢轨经焊接成长轨后,在其焊缝区熔合线上由于曾受过熔化过程和高温的影响,在热熔合的过热区会出现金属组织尤其是奥氏体晶粒粗化,产生焊接残余应力及硬度分布不均等问题,从而使接头冲击韧性下降,引起马鞍型磨耗,缩短钢轨的使用寿命,危机行车安全。所以必须对焊缝进行合理的正火处理,焊缝经电感应加热正火后,晶粒重新细化,钢轨塑形、韧性大幅度提高,硬度分布均匀合理。这是保证钢轨使用质量、延长钢轨使用寿命、保障行车安全的一项重要措施,然而现在各铁路局在线上焊后热处理的方式还都沿用的原有的现场铝热焊焊后热处理设备(火焰加热处理),这种老式的火焰加热方式采用氧气—乙炔火焰加热,属于热传导加热方式,靠氧气—乙炔焰的热量从钢轨外表面向内部传导,透热性较差、速度较慢、工序繁琐复杂、劳动强度大、劳动条件差,且这种方法受认为因素影响较大,加热温度不易控制、效果很不稳定。特别是线上移动式焊轨车被各铁路局引进以后,对更科学的热处理工艺及热处理设备的需求越来越迫切。 1.2钢轨焊缝热处理系统的特点 钢轨焊缝热处理系统是专为焊轨车对钢轨接头焊接后进行正火处理、打磨以及其他后续处理工作而开发设计的一整套装置。能进行无缝线路线上、线下焊接的后续处理和基地钢轨焊接的后续处理。 整套装置依集装箱的形势安装在平板车上,由焊轨车或轨道车牵引至作业地点。整套装置还包括柴油发电机组、蓄电池组、中频加热设备、水冷系统、热处理喷风装置、供气系统、钢轨仿形打磨设备、电气控制系统、液压吊机等组成。 加热设备采用德国西门子IGBT变频,电压反馈串联谐振电路。拥有双闭环控制功能,最大程度高效快速加热,优化金属工件的加热过程。整个控制系统均为数字集成化,各种保护动作迅速,整机故障率低,寿命长;相比原火焰加热正火方式,具有操作方便、节省人力且更加经济等优点;整套设备还采用3

集成化和数字化等技术,使工人操作更具人性化及系统化,所有重要工作数据均可采集反馈给控制中心并存档,操作人员可以在工作时通过液晶显示屏幕实时读取钢轨加热温度、加热时间、风冷风压、风冷时间等重要参数,也可随时调出存档检查每一项数据,且所有存档数据可以下载到专用转储卡上,转存到计算机中;也可直接通过打印设备进行打印,方便线路数据汇总、存档和后期分析;整套设备具有故障报警、错误操作报警、自动保护等功能,人性化操作方式,简单易懂。 4 第二章 钢轨焊缝热处理系统介绍 2.1 线上钢轨焊缝热处理新旧工艺对比 2.1.1 火焰加热正火 目前国内新研发的移动式焊轨车还没有专用的可移动式焊缝热处理设备,各铁路局基本都沿用原有的现场铝热焊焊后热处理设备(火焰加热处理),这种老式的火焰加热方式采用氧气—乙炔火焰加热,属于热传导加热方式,靠氧气—乙炔焰的热量从钢轨外表面向内部传导,透热性较差、速度较慢、工序繁琐复杂、劳动强度大、劳动条件差,且这种方法受认为因素影响较大,加热温度不易控制、效果很不稳定。在加上这种热处理方式加热后使其暴漏在大气中自然冷却,未对焊缝部分进行强制冷却,表面硬度相比全长表面淬火的母材也出现明显降低,现在只有在施工现场焊缝热处理还保留有这种方式,厂焊已基本被感应加热方式所取代。

图2.1 火焰加热器 如图2.1所示,这种老式的火焰加热正火的设备相当简陋,由一个防钢轨界面形状的加热器,加热器的内侧开有气孔,两侧为为氧气、乙炔的进气管接5

口,分别与氧气、乙炔罐引出的气管连接,需要加热时,将加热器的出气口点燃,为了满足加热区域的要求,需要有人拿一根推杆,不停的推拉加热器,使加热器沿着导轨前后移动,同时为了保证合适的加热温度,需要配合一个专门拿着测温仪,每过一段时间就进行一次温度测量。这样在测温的时候,就造成了无法移动加热器,使这种本来就不易保证加热均匀、受人为因素影响较大的 加热方式更大程度的收到影响。而且数据的记录、保存也都不方便,最重要的是无法很好的保证钢轨焊缝的质量,使钢轨焊缝处的寿命大打折扣,危机行车安全。 2.1.2 新型感应加热正火 感应加热技术是近些年新型的一种高新加热技术,基本原理都是利用电磁感应原理,把被加热物体放在交变磁场中,使其内部产生感应电流,从而产生焦耳热来加进行热的方法。这种加热加热方式靠涡流产生热量,效率高、速度快、温度容易控制、不受人为因素影响,热处理质量稳定可靠。感应加热技术根据加热所用的电流频率,分为高频加热、中频加热和工频加热,频率越高,加热效率越高,但加热的深度越浅,所以应根据并加热物体的体积和需要的透热深度选择合适的加热频率。这种高新的加热技术随着技术的不断发展和完善,变得越发成熟和高效,现已被所有的焊轨厂所引进。但这种加热方式因设备沉重、功率大、感应器设计困难以及线上焊接的条件限制等因素的限制,应用于线上焊缝热处理较为困难,但铁路技术的飞速发展特别是高速无缝铁路的发展,对这种技术的要求越来越强烈。钢轨焊缝热处理系统这一整套设备的研制成功,使上述难题得到了科学合理的解决方案。 这种高新的感应加热技术,配合强制风冷,和智能化的控制系统及记录存档功能,被共同集合于钢轨焊缝热处理系统这一整套设备,并在这套设备里,配备了辅助的钢轨切割、钢轨打磨、平直度校验、焊缝超声波探伤等设备。焊缝经本套设备热处理后的韧性、塑性、表面硬度等综合性能均可达到要求,在焊接工艺满足的情况下,甚至可以达到母材的性能。本设备加热部分如图2.2所示。前段铜质感应器可打开,闭合通电后,产生交变磁场,将内部钢轨加热。设备由吊机吊至工作处,并可靠固定后,按下加热按钮即可实现钢轨的正火加热,设备自动测温探头,适时将数据传回控制中心,可以适时的显示、记录、6

存档加热过程中的每一时刻的为目的温度。加热到合适的温度,设备会制动停止。整体设备美观、实用、智能、高效、操作简单、稳定性高。

图2.2 感应加热设备 2.2 线上钢轨焊缝热处理系统整套设备介绍

2.2.1钢轨焊缝热处理系统技术参数 1)适用环境

环境温度:-10℃~+45℃ 平均相对湿度:≤90% 海拔:≤3000m 2)作业条件

钢轨类型: 60kg/m,75kg/m 轨距:1435mm 超高:≤180mm 7

最大坡度:33‰ 最小曲线半径:145m 2.2.2钢轨焊缝热处理系统主要组成设备技术参数 1)发电机组 发电机组采用250GF“康明斯”动力发电机组,整个发结构紧凑,采用大容量底盘油箱,满足野外作业加油周期长得需求,机组固定安装在集装箱内。机组外观如图2.3,相关参数如下:

图2.3 发电机组 发电机组型号:250GF 容量/功率:280/250KW 柴油机型号:MTAA11-G3 柴油机功率:310/282KW 油箱容积:800L 气缸数:6 8

排列:直列 排气量:11L 进气方式:涡轮增压 2)空压机 采用博莱特微油式螺杆压缩机,具有可靠性高、易损件少、动力平衡性好、震动小、噪音低、效率高等特点。在压缩过程中,凭借自身所产生的压力差,不断向压缩室及轴承注入润滑油,注入的润滑油可在转子之间行车油膜,阴转子可直接由阳转子带动,并起到密封的作用,同时润滑油可降低因高频压缩所产生的噪声,可吸收大量的压缩热。机组外观如图2.4,基本参数如下:

图2.4 空压机 机组型号:BLT-60A/7 外形尺寸:(长*宽*高)1335*970*1630 机器重量:830kg 冷却风量:3276m3/h 电机功率:45kw 9

排气量:7.8m3/min 排气压力:0.7MPa 3)中频感应加热设备 加热装置采用德国西门子IGBT变频,电压反馈串联谐振电路。变换效率高达97.5%以上;拥有双闭环控制功能,最大程度提高加热效率。整个控制系统均为数字集成化,各种保护动作速度快,整机的故障效率低,寿命长。基本参数如下:

型号:JZ-200 接入电源:380V/50Hz 额定输出功率:200KW 输入电流:330A 频率:2000Hz 功率因数:≥0.95 负载持续率:100% 加热设备如图3.1所示

图2.5 中频加热设备 4)喷风装置 喷风装置通过高压气管与空压机后的储气罐连接,主要为钢轨中频加热后,

相关主题