当前位置:文档之家› 铋基材料的发展综述

铋基材料的发展综述

环境友好型铋基材料的制备及其性能研究1 概述能源危机和环境问题的日益加重已成为影响全人类可持续发展的重要问题。

近年来,可再生与不可再生资源日益枯竭,使得人们不得不高度重视排放物、废弃物的妥善处理和循环再生,减少不可再生资源的消耗和环境的污染,同时寻求绿色环保、可持续发展的新能源就逐渐受到世界各国的广泛关注。

光催化实际上是光催化剂在某些波长光子能量的驱动下,体内的空穴电子对分离,后又引发了一系列氧化还原反应的过程。

光催化氧化技术由于其具有环境友好,能有效去除环境中尤其是废水中的污染物,且能耗少,无二次污染等优点已被慢慢重视起来。

自1972 年Fujishima等[1]在《Nature》报道了TiO2在紫外光照射下可以催化水的分解后,半导体光催化剂一直是广大学者们研究的热点。

光催化被认为是解决能源问题的关键有效方法之一,近年来受到广大研究者的不断探究。

为了充分利用太阳光,人们对光催化材料进行了众多研究:一方面是对TiO2半导体进行改性,另一方面是寻求新型的非TiO2半导体光催化材料。

含铋光催化材料属于非TiO2半导体光催化材料中的一种,电子结构独特,价带由Bi-6s和O-2p轨道杂化而成。

这种独特的结构使其在可见光范围内有较陡峭的吸收边,阴阳离子间的反键作用更有利于空穴的形成与流动,使得光催化反应更容易进行。

本文将对近年来含铋光催化剂的研究进展进行综述。

2 铋类光催化剂的制备铋氧化物光催化剂铋氧化物是很重要的功能材料,在光电转化、医药制药材料等方面有着很广泛的运用。

其中,纯相还具有折射率高、能量带隙低和电导率高的特点。

Bi2O3有单斜、四方、体立方和面立方四种结构,只有单斜结构室温下可稳定存在,其他结构在室温下均会转变成单斜结构。

化学沉积法、声化学方法、溶胶-凝胶法、微波加热法等都是制备纳米Bi2O3的方法。

产品的形态也可根据方法不同而不同,如颗粒状、薄膜状、纤维状等。

Wang 等[2] 利用沉积法合成钙铋酸盐(CaBi6O10/Bi2O3)复合光催化剂,在可见光下(波长大于420nm)降解亚甲基蓝,催化效果显著。

反应过程见下图,CaBi6O10的导带边比Bi2O3更接近阴极,当CaBi6O10受到太阳光照射后,产生的光生电子迅速转移到Bi2O3的导带边上,Bi2O3的光生空穴转移到CaBi6O10的价带上,有效实现了光生电子-空穴对的分离,减少了复合率,光催化活性大大提高。

卤氧化铋光催化剂卤氧化铋BiOX(X=Cl、Br、I)因其较高的稳定性和光催化活性受到研究者的关注,发现光催化活性明显高于P25,并且随着卤素原子序数的增加,卤氧化物BiOX(X=Cl、Br、I)的光催化活性逐渐增大,表列出了卤氧化铋光催化剂几种典型制备方法[3-6]。

表 卤氧化铋光催化剂的制备方法与形貌 BiO X (X=Cl 、Br 、I )的晶型为PbFCl型,是一种高度各向异性的层状结构半导体,属于四方晶系[7]。

以BiOCl 为例,Bi 3+周围的O 2−和Cl −成反四方柱配位,Cl −层为正方配位,其下一层为正方O 2−层,Cl −层和O 2−层交错45°,中间夹心为Bi 3+层。

通过计算[8]表明:BiOF 为直接带隙半导体,其他为间接带隙半导体,价带分别由O-2p 和X-np (此处对于F 、Cl 、Br 、I ,n 分别为2、3、4、5)占据,而导带主要由Bi-6p 轨道贡献。

这种结构使得X-np 上的电子吸收光子之后,极容易被激发到Bi-6p 上,实现空穴-电子对的分离,被分离的电子和空穴必须通过结构的一些空隙才能进行复合,复合率大大降低,因此光催化活性较高。

制备具有小粒径、大比表面积、高催化活性的纳米卤氧化铋颗粒一直是研究的热点。

常见的制备方法包括水解法、溶剂热法、电沉积法、软模板法和溶胶-凝胶法等[9-13];此外还包括一些特殊方法,如常温超声法[15]、微波法和电纺丝法[14]。

上述均是对制备方法的改良,卤氧化铋的改性体现在以下两方面:一是掺入其他的元素;二是形成铋基卤氧化物。

BiOX 制备方法 形貌和尺寸 BiOCl 水解法 珠光皮状,粒度5~10μm BiOBr水热合成法 球状颗粒,2~10μm软模板法 200~300nm 的纳米颗粒 BiOI 快速放热固态复分解法 粒径约为70nm 复合而成的微米层Chakraborty 等[15]在铋基卤化物BiOCl/Bi 2O 3表面负载WO 3,并用其降解TPA (1,4-对苯二甲酸),当掺杂W 的摩尔分数为 %时,催化活性是BiOCl/Bi 2O 3的 倍Xiao 等[16]采用溶剂热法制得三维构型BiOCl/BiOI ,当采用90 %的BiOI 进行复合反应时制得的催化活性最高,60min 内对双酚A 的最大降解率可达 %。

Zhang [17]利用离子热液体法将BiOCl 、BiOBr 复合获得花瓣状的复合物,光催化活性较复合前有显著提高。

总之,无论是卤氧化铋之间按某种比例的复合,还是氧化铋与卤氧化铋的复合,又或者卤氧化铋与含铋酸盐的复合[18],都在一定程度上提高了催化活性。

铋的含氧酸盐光催化剂铋的含氧酸盐化合物具有独特的电子结构,并且在可见光区域内有较陡峭的能带吸收边,是一种新型高催化剂。

目前热门研究的分别有以下几类:钛酸铋,最先由Aurivillus 在1949年发现,此系列主要包括Bi 4Ti 3O 12、Bi 2Ti 2O 7、Bi 2Ti 4O 11、Bi 12TiO 20、Bi 20TiO 32等。

其中,Bi 4Ti 3O 12和Bi 2Ti 2O 7由于具有比PZT 类铁电材料更好的铁电和高介电特性而被用于微电子器件的制备,Bi 12TiO 20由于光电和电光性质优良而被用作信息处理材料[19]。

钨酸铋,钨酸盐半导体材料广泛应用于磁性器件、闪烁材料和缓蚀剂等[20],同时作为可见光响应的光催化剂,具有良好的紫外和可见光响应、热稳定、低成本、环境友好等优点。

Bi 2WO 6是最简单的Aurivillius 型层状氧化物之一,Bi 2O 2层和WO 6层沿着c 轴交替组成Bi 2WO 6晶体,为典型的钙钛矿层状结构[23]。

钒酸铋,钒酸铋对可见光的吸收较大,但其在可见光下产生的光生电子和空穴极易复合,通常采用贵金属、碱土金属、过渡金属、稀土金属和非金属作为助催化剂或掺杂剂加入钒酸铋中以提高其催化活性。

铁酸铋,常见的铁酸铋类化合物有BiFeO3、Bi2Fe4O9等,其中BiFeO3具有较窄禁带能(Eg= eV),可吸收可见光,其在光催化领域的潜在应用引起了研究者的广泛关注,如图所示。

图 BiFeO3的结构碱土金属铋酸盐碱金属铋酸盐NaBiO3作为光催化性能优于Bi2O3的新型光催化材料,具有较大的潜在应用性[21-24]。

Kako等[21]认为NaBiO3晶体中的Na-3s轨道与O-2p 轨道杂化形成的高度分散的s-p轨道可增强光生电子的流动性,使得电子-空穴的复合率减少,因此具有较强的光催化活性。

谌春林等[22]研究了经过不同条件热处理的商品铋酸钠在可见光下对甲基橙、橙Ⅱ、亚甲基蓝和苯酚的降解作用,发现铋酸钠对几种有机物均有一定的降解作用,并且适当的热处理可以提高其光催化性能。

Chang等[23]用铋酸钠与氯氧化铋制备出复合NaBiO3/BiOCl光催化剂,发现复合物的催化活性均高于铋酸钠和氯氧化铋,经分析认为空穴-电子对的有效分离增加了复合物的光催化活性。

碱土金属铋酸盐被称为最具潜力的可见光响应光催化剂,化合物中Bi3+的孤对电子使其具有Bi-O三维网络片状结构。

复合型铋催化剂由于多元复合金属氧化物的晶体结构和电子结构呈现多样性,使得他们有可能同时具备响应可见光激发的能带结构和高的光生载流子移动性,因此被作为潜在的高效光催化材料得到了广泛研究铋与一些金属组成的复合氧化物就是这其中的代表,它们能被可见光激发且具有良好的光催化性能。

Bi4NbO8C1就是这一类催化剂的典型代表。

3 铋类光催化剂在水污染领域应用的发展传统污水处理方法物理方法通过传统的处理技术,仅是把污染物从液相转移到固相或者气相当中,并不能从根本上将染料分子完全降解,难以使处理后的废水达到国家规定的排放标准,而且容易引起废物堆积和二次污染[25,26]。

化学氧化法主要采用臭氧,过氧化氢,过二硫酸盐,次氯酸盐等氧化一还原剂,色度去除率极高,但其耗能大,COD去除率小。

电化学法对于量小的废水,具有设备简单、管理方便和工程效果较好的特点,但是其脱色率不高,耗电大,电极消耗较多,不适宜于水量大时采用。

高温深度氧化法,具有良好的处理效果,但技术要求高、投资大、处理成本高,难以在实际中得到应用。

生物方法主要是活性污泥法,可分为好氧法、厌氧法、好氧一厌氧法。

生物法是利用微生物酶和染料分子发生氧化还原反应,破坏不饱和键和发色基团,进行染料降解脱色。

生物处理法具有应用范围广、处理量大、成本低等优点,但对处理印染废水也有着明显的缺点:传统生物处理法由于染料废水可生化性差,微生物对营养物质、pH值、温度等条件有一定要求,难以适应印染废水水质波动大、染料数量繁多、毒性高的特点。

并且存在占地面积较大,色度去除率不高,色度和COD浓度不易达标等缺点。

光催化氧化污水处理方法光催化氧化技术能耗低,操作简便,反应条件温和,可广泛降解目标物并减少二次污染,因此受到了人们的广泛关注。

光催化对机污染物(如染料,农药,卤代物,表面活性剂和油类等)废水有良好的光催化降解作用,可以使大多数有机污染物完全破坏,最终生成无机小分子物质,消除其对环境的污染以及对人体健康的危害[27]。

含油废水的处理刘婷等[28]以空心漂珠作为载体,用溶胶.凝胶法制备了以空心漂珠为载体的TiO光催化剂,以100 mL 5 mg/L汽轮机油为水面模拟污染物,考2察了其在日光照射下的降解效率。

实验结果表明,以空心漂珠为载体,可制得能长期漂浮于水面的负载型TiO光催化剂,通过浮油富集和光催化降2附载在膨胀珍珠岩解机制可对水面浮油进行有效的治理。

余晟等[29]将TiO2上,制备的以膨胀珍珠岩为载体的TiO光催化剂可漂浮在水面上直接利用2太阳光处理水面溢油,且光催化剂回收容易,使用寿命长,该催化剂在167W/cm2高压汞灯照射7 h,辛烷的光催化去除率为87 %。

印染废水的处理邹晓兰等[30]用纳米Cu2O/珍珠贝壳复合光催化材料,研究光催化氧化法对活性大红染料B-3G溶液的降解脱色效果。

染料浓度200 mg/L,催化剂浓度为2 g/L,pH为,当紫外光照时间大于90 min时,色度去除率达到98 %,说明该纳米材料对染料的脱色效率高。

罗洁等[31]对色度375、pH值、CODer mg/L的模拟墨绿色印染废水采用紫外光光照处理后脱色率达90%,CODcr脱除率达80 %左右。

相关主题