井下防“越级跳闸”与电力监控系统项目设计与实施方案1 项目的必要性1.1 矿井电网目前存在的主要问题1.1.1 矿井电网的保护“越级跳闸”问题,造成供电系统大面积停电目前我国煤炭企业电网普遍存在多级辐射状供电模式,其特点为:一方面由于延伸级数多,电网配合时限不足,以致保护时限无法配合;另一方面由于系统容量增大、供电线路短,不同级别的短路电流接近,以致保护的电流定值无法配合,因此,无奈之际只能牺牲选择性而保证快速性,致使矿井电网的继电保护系统普遍存在“越级跳闸”问题,系统出现短路故障时由于无选择性配合,造成井下供电系统大面积停电,引发停电停风事故,严重影响煤炭安全生产。
1.1.2 矿井电网漏电保护的可靠性问题,影响供电可靠性我国3~35kV矿井电网多采用中性点不接地或经消弧线圈接地方式,这种小电流接地系统漏电保护(接地保护)的可靠性问题一直是困扰煤矿供电安全的技术难题。
过去当系统发生单相接地故障时,只能采用逐线路拉闸停电的办法判断故障线路,影响供电可靠性,后来国内外研究了众多的漏电(接地)故障选线技术,这些技术中的某些方法在中性点不接地系统或采用集中的接地选线装置中应用效果尚好、有些方法在实际应用中可靠性较差,在单装置中实现可靠的漏电保护功能则更加困难,特别是在中性点经消弧线圈接地系统,由于受补偿方式及消弧线圈脱谐度等因素的影响,造成漏电保护功能不可靠,影响矿井电网的供电可靠性。
1.1.3 矿井电网的自动化水平偏低,技术管理手段落后随着技术的发展,煤炭企业开始采用一些监控技术提高生产效率和安全性,矿井电网的地面变电站逐步实现了综合自动化系统,但由于煤矿井下电网的特殊性,井下电网的自动化应用水平偏低,井下供电系统保护技术不完善、软硬件应用技术平台落后,使用的协议、通信接口互不兼容,造成系统联网困难,整体技术管理手段落后。
1.2 项目实施的必要性以上问题已成为制约煤炭安全生产的技术难题,解决这些难题、提高矿井电网的可靠性已势在必行。
传统的电流保护技术采用定值与时限配合的原则实现保护选择性,鉴于上述分析的原因,这种配合原则已无法从原理上解决煤矿电网的保护选择性问题;随着矿井供电规模的增大,越来越多的矿井电网采用消弧线圈接地方式,而现场的许多保护装置仍沿用功率方向型漏电保护技术原理,当系统发生接地故障时,则势必造成系统“误动”现象频繁。
针对上述技术难题弘毅电气开发了智能零时限电流保护、光纤差动保护和改进型零序导纳原理的漏电保护技术,从原理上解决了矿井电网的“越级跳闸”问题。
智能零时限电流保护技术不需要定值和时限的严格配合,采用网络通信技术自下而上地传递保护故障信息的方法实现保护的选择性;改进型零序导纳原理的漏电保护能自适应矿井电网的中性点接地方式;井下应用的综合保护装置采用高性能的软硬件平台、国际标准的通信协议,提高了保护装置的可靠性和适用性。
通过长期的现场试运行证明,能有效地解决矿井电网的存在技术问题,提高煤矿供电系统的运行可靠性。
电力作为煤炭开采活动的主要动力,在煤炭生产过程中占有重要地位,矿井电网的运行安全和可靠性是煤炭安全生产的重要保障。
特别是对于高瓦斯矿井,因无计划停电、停风而导致的瓦斯、煤尘等重大恶性事故时有发生,矿井电网的供电可靠性已成为影响煤矿安全生产的重大安全隐患。
因此,矿井电网有必要建成一个智能化、数字化和自动化的坚强电网,提高矿井电网的可靠性和自动化水平,保障煤炭企业的安全生产。
1.3 项目实施的目标采用新型的网络保护技术,解决煤矿井下供电系统继电保护选择性和速动性的矛盾,从根本上解决矿井电网继电保护的“越级跳闸”问题,提高煤矿供电系统可靠性和安全性,为煤矿安全生产提供有力保障。
采用新型的漏电保护技术,解决矿井电网漏电保护的可靠性问题,避免漏电保护动作不可靠造成的系统保护“误动”和“越级跳闸”,提高供电系统可靠性。
构建集成的矿用电站自动化系统,实时监控矿井电网的运行状态,提高矿井电网的自动化水平、运行效率和经济效益,为矿井电网的安全运行提供决策支持。
2 防“越级跳闸”与电力监控系统技术简介2.1 概述弘毅电气矿用电站自动化系统融入了智能零时限电流保护技术、光纤差动电流保护技术、改进型零序导纳原理的漏电保护技术、电弧光保护技术、数字化变电站技术和集成的电力自动化监控系统等多项创新技术,为用户提供多种技术选择,所采用的先进技术致力于解决当前矿井电网存在的技术难题。
弘毅电气矿用电站自动化系统结构如图1所示。
本方案主要介绍井下防“越级跳闸”与电力监控技术。
图1 矿用电站自动化系统结构井下防“越级跳闸”系统采用光纤差动保护和智能零时限电流保护技术实现。
MPR303S光纤差动保护装置、MPR304S智能零时限电流保护装置、KHL127矿用保护通信服务器和专用保护通信网络组成井下防“越级跳闸”系统。
MPR300S系列矿用保护装置、KJ38-F电力监控分站和电力监控通信网络组成井下电网电力监控系统,与电力监控中心配合实现井下电网电力监控系统。
电力监控中心根据规模配置操作员站、工程师站、视频监控站、Web服务器及数据服务器,负责采集、处理、储存矿井电网的监控信息,实现矿井电网的遥测、遥信、遥控、遥调功能。
2.2 智能零时限电流保护技术弘毅电气独创的智能零时限电流保护采用网络保护技术,通过保护装置间的智能通信,检测故障区域和故障定位,实现上、下级保护的配合。
智能零时限电流保护系统由MPR304S智能终端和 KHL127 矿用通信服务器组成,保护原理如图2所示。
图2 智能零时限电流保护原理将供电网中的MPR304S保护装置按物理位置(进线、出线和联络开关)划分为多级保护系统,每台MPR304S保护装置有两对光纤接口,其中一对光纤接口通过点到点通信方式与通信服务器对应母线的光纤接口板连接、联络保护装置的两对光纤接口分别与服务器对应母线的接口板连接、进线保护装置的另一对光纤接口与上级变电站的出线保护装置的一对光纤接口相连。
系统中所有保护装置的速断保护均可设置为零时限,保护定值可按保证灵敏度整定,且不需要上、下级保护定值的严格配合。
当系统发生短路故障时,相关的保护装置可能同时启动,当达到保护定值时,距离故障点最近的本级保护装置动作,并通过服务器的光纤接口电路进行逻辑判断,同时逐级向上级保护传递保护故障信息,上级保护装置收到保护故障信号后与下级保护装置建立通信,实时检测下级保护的动作情况,等待距离故障点最近的开关跳闸,若跳闸成功则故障信号自动消失,若跳闸不成功则经短延时(保护动作时间+断路器固有动作时间,可整定)由上级保护装置切除故障。
弘毅电气独创的智能零时限电流保护是对传统继电保护技术的革命,他摒弃了传统电流保护的选择性配合理念,简化了保护的配置,消除了保护的死区,解决了继电保护快速性和选择性的矛盾,为实现全电网保护有选择快速动作奠定了技术基础。
智能零时限电流保护技术适应于各种复杂的供电网络,电网中的所有保护装置速动段保护均可设置为零时限,所有位置的断路器(包括联络开关)均可设置保护功能,并可实现绝对选择性,同时实现了断路器失灵逐级快速后备保护功能。
2.3 光纤差动保护技术弘毅电气的光纤差动保护技术是地面电网成熟的保护技术在井下电网保护中的应用。
光纤差动保护通过光纤信道实现供电线路的纵联差动保护,为变电站供电线路提供绝对的选择性,实现故障隔离。
光纤差动保护原理如图3所示。
在上、下级变电站的进、出线开关成对配置MPR303S光纤差动保护装置,并在保护装置间设置光纤通信信道。
当供电线路发生区内故障时(D1、D2、D3),线路差动保护动作,供电线路两侧开关跳闸,切除线路故障;当发生供电线路区外故障时(D4、D5、D6),线路光纤差动保护不动作,而由对应的出线保护装置切除故障(但D6点的母线短路故障只能由G0或G1保护的时限过流后备保护切除),实现防“越级跳闸”功能。
光纤差动保护采用了弘毅电气独创的“综合比相法”抗TA饱和专利技术,根据线路光纤差动保护采用传输模拟量向量交换数据的特点,综合区内故障、区外故障以及在TA饱和时线路两侧电流的相位关系的差别,在不牺牲装置动作灵敏度的前提下,有效提高了装置的抗TA饱和性能和动作的可靠性,完美解决了传统差动保护抗TA饱和与保护灵敏度不能兼顾的问题。
弘毅电气光纤差动保护为供电系统防止“越级跳闸”提供了又一种技术选择。
光纤差动保护可与智能零时限电流保护系统配合应用,即各变电站进出线之间采用光纤差动保护实现故障隔离,变电站内部采用智能零时限电流保护,如图4所示。
图3 光纤差动保护配置原理图 4 光纤差动保护与智能零时限电流保护配合2.4 零序导纳原理的漏电保护技术弘毅电气针对目前漏电保护技术的现状,进行了大量的研究分析,提出改进型零序导纳原理实现的漏电保护技术。
当系统出现接地故障时,保护装置测量线路的对地导纳Y=g+jb。
非故障支路的零序测量导纳位于导纳平面的第一象限;对中性点不接地系统,故障支路的零序测量导纳位于导纳平面的第三象限;对中性点经消弧线圈接地系统,当为过补偿方式时,故障支路的零序测量导纳位于导纳平面的第二象限,当为欠补偿方式时,故障支路的零序测量导纳位于导纳平面第三象限。
非故障支路的零序测量导纳位于第一象限,其他各种接地方式的故障支路的零序测量导纳位于第二、第三象限,由此区分接地故障,完成接地故障检测。
目前许多在用的矿用保护装置所采用的漏电保护原理仍使用“功率方向型”、少数采用其他漏电保护原理。
由于矿井电网的规模越来越大,系统电容电流远大于《煤矿安全规程》规定的允许值,因此,矿井电网大多采用消弧线圈接地方式,用以补偿系统电容电流,在这种状况下,如仍使用功率方向型漏电保护原理的保护装置,则势必造成系统漏电保护“误动”现象频繁发生。
弘毅电气MPR300S系列数字式矿用综合保护装置均包含改进型零序导纳原理的漏电保护技术,通过采用新颖的选择性漏电保护技术、优化设计的保护算法和提高漏电信号的采样精度等技术措施,改善了漏电保护系统的功能特性,确保了漏电保护功能的可靠性,可有效避免因保护误动造成的“越级跳闸”事故。
3 防“越级跳闸”与电力监控系统技术特点3.1 先进的软硬件平台保护装置的硬件平台采用TI公司的32位浮点DSP处理器,主频为150MHz,具有8级流水线结构,300M FLOPS处理速度;处理器的外围接口电路采用现场可编程门阵列(FPGA)技术,简化了接口电路设计,提高了硬件可靠性;配置12.5 MSPS 的A/D,采用先进的采样技术,最大程度消除采样坏数据对保护装置的影响;基于嵌入式实时多任务操作系统的软件平台,安全可靠的任务调度机制,方便实现各种复杂功能需求,可根据应用需求增减功能模块,配置灵活,维护方便,具有高可靠性和扩展性。