当前位置:文档之家› 直流稳压电源设计毕业论文

直流稳压电源设计毕业论文

毕业设计(论文)直流稳压电源设计系别:电子信息工程系班级:2012姓名:吴鹏辅导老师:杨静摘要在各种电子实验中,电源是最基本的需要。

设计出一种高精度的可调输出的电源不但能满足不同电子实验的要求,而且能满足在同一实验中需要使用不同的电压值来测试的要求。

本文设计了一种高精度程控稳压电源。

该电源的功能由硬件和软件两方面来实现。

硬件方面包括变压器、整流电路、滤波电路、稳压电路、反馈电路、保护电路、程控电路、显示电路以及支持单片机运行的复位和时钟电路。

市电220V电压通过变压器流入系统,经过整流、滤波后变成近似的直流电压,再经过稳压部分稳压后获得稳定的直流输出。

稳压部分由达林顿管作为调整管,由运放作为反馈取样之后的放大电路,利用放大电路来提高调整管的反应灵敏度电压稳定性。

软件方面,使用单片机语言编程,控制程控部分,即:单片机,D/A、A/D部分。

该部分作用是控制稳压电路部分的基准电压的输出与调整,同时实现高精度的输出,并且控制数码管显示输出电压。

整个电路的设计就是在综合考虑各个模块现有的电路的基础上,选择最佳电路来实现设计目标的。

关键词直流稳定电源;整流;滤波;程控;D/A;A/D目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题背景 (1)1.2电源技术的发展趋势 (1)1.3电源技术存在的问题 (2)第2章稳压电源整体设计 (3)2.1整流电路 (3)2.1.1单相半波整流电路 (3)2.1.2单向全波整流电路 (4)2.1.3桥式整流电路 (4)2.2 滤波电路 (5)2.2.1电容滤波电路 (6)2.2.2电感滤波器 (7)2.3稳压电路 (8)2.3.1稳压电路的指标 (8)2.3.2稳压管基本应用电路 (9)2.3.3串联反馈型晶体管稳压电路 (10)第3章硬件部分外围电路设计 (15)3.1程控部分 (15)3.1.18051单片机 (15)3.1.2D/A和A/D芯片 (15)3.1.3单片机外围电路 (17)3.2数码管显示电路 (18)3.3按键电路 (19)3.4保护电路 (19)3.4.1用稳压管保护 (19)3.4.2二极管组成得过流保护电路 (20)第4章系统软件设计 (21)41系统核心指令系统 (21)4.2软件系统流程 (21)第5章实验设计中的不足 (25)结论 (26)参考文献 (27)附录1 (28)附录2 (29)附录3 (30)致谢 (31)第1章绪论1.1 课题背景电子设备都需要良好稳定的电源,而外部提供的能源大多数为交流电源,电源设备担负着把交流电源转换为电子设备所需的各种类别直流电源的任务,转换后的直流电源应具有良好的稳定性,当电网或负载变化时,它能保持稳定的输出电压,并具有较低的纹波。

我们通常称这种直流电源为稳压电源[2]。

但有时提供的直流电压不符合设备要求,仍需变换,称为DC/DC变换。

常规的稳压电源为串联调整线性稳压电源,它通常由50Hz工频变压器、整流器、滤波器、串联调整线性稳压器组成。

调整元件工作在线性放大区,流过的电流是连续的,调整管上损耗较大的功率,需要体积较大的散热器,因此该种电源体积大,且效率低,通常仅为35%~60%。

同时承受过载能力较差,但是它具有优良的纹波及动态响应特性。

开关电源是利用现代电力电子技术,通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。

开关电源处于电源技术的核心地位,它主要分为AC/DC和DC/DC两大类。

开关电源去除了笨重的工频变压器,代之以几十kHz、几百kHz甚至数MHz的高频变压器。

由于调整管工作在开关状态,因而功率损耗小,效率高。

目前,开关电源技术向着轻、小、薄、低噪音、高可靠、抗干扰的方向发展。

新器件和新拓扑理论的出现使得开关电源日趋可靠、成熟、经济、适用。

1.2电源技术的发展趋势新型半导体器件的发展使开关电源技术进步的龙头。

目前正在研究高性能的碳化硅半导体器件,一旦开发成功,对电源技术的影响将是革命性的。

此外,平面变压器,压电变压器及新型电容器等元件的发展,也将对电源技术的发展起到重要作用。

集成化是电源技术的一个重要的发展方向。

通过控制电路的集成,驱动电路的集成以及保护电路的集成,最后达到整机的集成化生产。

集成化和模块化减少了外部连线和焊接,提高了设备的可靠性,缩小了电源的体积,减轻了重量。

高频开关电源的发展趋势更是向着高频化、模块化、数字化、绿色化的方向发展。

开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。

开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。

这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。

开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。

还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发[5]1.3 电源技术存在的问题随着半导体技术和微电子技术的高速发展,集成度高、功能强大的大规模集成电路的不断出现,使得电子设备的体积在不断地缩小,重量在不断地减轻,所以从事这方面研究和生产的人们对开关稳压电源中的开关变压器还感到不是十分理想,他们正致力于研制出效率更高、体积更小、重量更轻的开关变压器或者通过别的途经取代开关变压器,使之能够满足电子仪器和设备微小型化的需要,这是从事开关稳压电源研制的科技人员目前正在克服的一个困难。

开关稳压电源的效率是与开关管的变换速度成正比的,并且开关稳压电源中由于采用了开关变压器以后,才能使之由一组输入得到极性、大小各不相同的多组输出。

要进一步提高开关稳压电源的效率,就必须提高电源的工作频率。

但是,当频率提高以后,对整个电路中的元器件又有了新的要求。

例如,高频电容、开关管、开关变压器、储能电感等都会出现新的问题。

进一步研制适应高频率工作的有关电路元器件,是从事开关稳压电源研制科技人员要解决的第二个问题。

工作在线性状态的线性稳压电源,具有稳压和滤波的双重作用,因而串联线性稳压电源不产生开关干扰,且波纹电压输出较小。

但是在开关稳压电源中的开关管工作在开关状态,其交变电压和电流会通过电路中的元件产生较强的尖峰干扰和谐振干扰。

这些干扰就会污染市电电网,影响邻近的电子仪器及设备的正常工作。

随着开关稳压电源电路和抑制干扰措施的不断改进,开关稳压电源的这一缺点得到了一定的克服,可以达到不妨碍一般的电子仪器、家用电器的正常工作的程度。

但是在一些精密电子仪器中,由于开关稳压电源的这一缺点,却使它得不到使用。

所以,克服开关稳压电源的这一缺点,进一步提高它的使用范围,是从事开关稳压电源研制科技人员要解决的第三个问题。

第2章稳压电源整体设计在电子电路中,通常都需要电压稳定的直流电源供电。

小功率稳压电源的组成可以用图2-1表示,它是由变压器,整流,滤波,和稳压电路等四个部分组成。

图2-1直流稳压电源组成框图电源变压器是将交流电网220V的电压变为所需要的电压值,然后通过整流电路将电压变成脉动的直流电压。

由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的支流电压。

但这样的电压还随电网电压波动(一般有正负10%左右的波动),负载和温度的变化而变化。

因而在整流、滤波电路之后,还需接稳压电路。

稳压电路的作用是当电网电压波动、负载和温度变化时,维持输出直流电压的稳定。

当负载要求功率较大,效率较高时,常采用开关稳压电源[6]。

2.1整流电路2.1.1 单相半波整流电路单相半波整流电路是最简单的整流电路,图2-2是单相半波阻性负载的整流电路。

图2-2 单相半波整流电路电路中,T 为变压器,其作用是将市电220V 的交流电压变成所需要的直流电压,VD 是整流二极管,其作用是方向变化的交流电变为单相的脉动直流。

输出直流电压的平均值,即直流电压V 0可按下式求出2220045.0)(sin 221V t td V V ==⎰ωωππ (2-1) 半波整流电路的优点是结构简单,使用的元器件少。

但缺点是输出的波形脉动大,直流成分比较低;变压器有半个周期不导电,利用率低;变压器电流含有直流成分,容易饱和。

所以只能用在输出功率较小、负载要求不高的场合。

2.1.2单向全波整流电路单向全波整流电路如图2-3所示。

图2-3 单相全波整流电路全波整流电路接入滤波电容C ,其充放电过程与半波整流相同,但由于V21和V22轮流通过VD1和VD2向电容C 充电,所以输出电压的脉动比半波整流时小。

2.1.3 桥式整流电路桥式整流电路如图2-4所示。

桥式整流电路的电压可作如下估算。

整流元件仍认为是理想的,在纯电阻负载条件下,电压的顺时值为:πωω20sin 22<<=t t V V O (2-2)29.0V V O = (2-3)图2-4 桥式整流电路每个二极管截止时的反向电压相同,为V2的幅值。

即:22V Vd = (3-4) 导通二极管的电流平均值为负载电流平均值的一半,最大值与负载电流最大值相同。

综上,桥式整流电路的特点是:与半波整流电路相比,在V2,RL 相同的条件下,输出的直流电压提高了一倍;电流脉动程度减小;变压器正负半周都有对称电流流过,既得到充分利用,又不存在单向磁化的问题。

所以它的应用较为广泛。

但是需要4个整流二极管,线路稍复杂。

以上简单介绍了几种整流电路,根据其优缺点的判断,所以在我的设计中采用了桥式整流电路。

一方面,能使电能得到充分利用,另一方面,由于有现成的整流桥集成元件,设计起来也比较方便。

2.2 滤波电路交流电经整流电路后可变为脉动直流电流,其中含有较大的交流分量,为了使设备能用上纯净的直流电,还必须用滤波电路滤除脉动电压中的交流成份。

滤波电路一般由电抗元件组成,如在负载电阻两端并联上电容器C ,或在负载中串联上电感器L ,或由电容,电感组合而成的各中复式滤波电路。

2.2.1 电容滤波电路电容滤波就是在整流电路后面,用大量的电解电容与负载并联例如以桥式电路为例,整流滤波电路如图2-5所示:图2-5电容滤波电路电容滤波电路简单,制作方便。

但是它的输出电流不宜太大,而且要求输出电压的脉动成分较小时,必须增加电容器的容量,因此电路的体积大也不经济。

为此,RC-π型滤波电路在实际电路中经常使用。

RC-π型滤波电路如图2-6所示:它实际上就是在电容滤波的基础上再加上1级RC滤波电路构成的。

采用这种滤波电路可以进一步降低输出电压的脉动系数。

但是,这种滤波电路的缺点是在R上有直流压降,因而必须提高变压器次级电压;因而整流管的冲击电流仍然比较大;同时,由于R产生压降,外特性比电容滤波更软。

相关主题