-- -- 膜分离技术研究进展 组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌 膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、
石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。 膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。 膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。 在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。下面分类介绍一下膜分离技术的研究现状。 1 电渗析技术研究现状(刘汉飞) 电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术普遍应用于食品生化行业以及废水处理。下面分类对这几方面的应用现状做一介绍。 1.1 电渗透技术在食品行业中的应用 利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。研究结果显示:原酱油食盐含量19.4%,经电渗析处理后,酱油含量降至约9%,食盐以外的有效成分也有一些被除去,比较明显的是作为酱油品质指标的氨基酸态氮,有约8%的损失。酱油风味大致不变,证明了电渗-- -- 析对酱油的脱盐是切实可行的分离方法。另外在竹笋、菊糖生产中也有应用。 1.2 电渗析技术在生化行业中的研究应用 Xu TW [1]等使用由聚乙烯制成的偶极细胞膜来生产柠檬酸钠。这个过程是通过实验室里有效面积为20cm2的偶极薄膜来测试的。基于偶极阳离子薄膜的结构,在离子交换和离子转移的方面对不同的硫酸钠和柠檬酸钠浓缩物的表现进行比较和讨论。结果说明,在其操作中,从能量的消耗,效率和酸浓度的角度来看,硫酸钠和柠檬酸钠的最佳浓度分别为0.25-1.5 M和0.5-1.0 M。 1.3 电渗析技术在废水处理中的应用 叶微微等采用国产离子交换膜研究了采用电渗析法脱盐回收废液中的苹果酸,及其对苹果酸废液脱盐的工艺条件。将废液pH调至4.0,工作电流11A下循环脱盐2h,脱盐率达99%以上,含Na+11821mg/L的废液脱盐至含Na+42. 88mg/ L,其中L-苹果酸损失18.94%,基本达到分离要求,表明了电渗析对苹果酸废液的脱盐是切实可行的。 唐艳等采用电渗析法处理氨氮废水,对工艺条件进行了优化研究,在实验室条件下得到工艺参数。电渗析电压为55V,进水流量为24L/h,氨氮废水进水电导率为2920μs/cm,氨氮浓度为534. 59mg/L。出水室浓水和淡水各占19%和81%,浓水和淡水的电导率分别为14000μs/cm和11. 8μs/cm,氨氮含量分别为2700mg/L和13mg/L。该电渗析装置处理后的氨氮废水达到排放标准,可以满足回用要求。 1.4 膜污染问题得研究 Christophe Casademont[2]等研究证明利用脉冲磁场在电渗析过程中防止离子交换膜的污染和提高电渗析效率的可行性。Christophe Casademont等测试一种新的细胞结构和研究脉冲磁场在防止污染时的效果和电渗析参数。结果表明,和别的方法比较,将脉冲磁场耦合到高浓度的分离料液中,可以提高去矿物质率,同时并没有发现膜的污染和失活。Christophe Casademont等的研究也表明了,将脉冲磁场结合到经典电渗析装置中,可以减少矿物污染,并且在酸性条件下还能降低蛋白污染。 2 反渗透膜技术研究现状(郭志新) 反渗透是利用反渗透膜选择性地透过溶剂(通常是水)而截留离子物质的性质,以膜两侧静压差为推动力,克服溶剂的渗透压,是溶剂通过反渗透膜而实现-- -- 对液体混合物进行分离的过程。目前对于反渗透膜的研究主要着重于增加膜水通量,膜的机理模拟研究,减轻膜污染,以及降低处理能耗。 2.1反渗透膜功能层研究 对于复合膜来说,渗透通量和截留率主要取决于其表面的一层超薄分离层,所以针对优化超薄分离层性能的研究一直以来就是热点,然而由于其厚度太小(通常小于200 nm),很难对其进行热力学和动力学研究。目前,有学者另辟蹊径,利用石英微天平等仪器定量研究了水在这一超薄层中的溶解、吸附行为,以及水分子吸附时所带来的机械压力。他们发现超薄功能层具有相当大的自由体积对于水在其中的吸附和传输非常有利。Jeong[3]等研制的沸石-聚酰胺新型超薄复合反渗透膜在传统复合膜的基础上又具备了分子筛的独特功能(可控的亲水性、电荷密度和孔结构,优良的抗菌性能以及更高的化学、热力学和机械稳定性),可以使水分子优先通过超亲水的分子筛纳米孔,同时截留率基本保持不变。Sanchuan Yu[4]等研究通过MPD和CFIC的界面聚合制成的薄膜复合材料尼龙-尿烷海水反渗透膜的性能Sanchuan Yu等做了很多尝试,如利用混合的交联剂,选择不同MPD溶解性和扩散性的有机溶剂,改变有机的CFIC的温度,改变固化条件和后处理等。导致膜的通水量和脱盐率是通过人工海水的渗透实验来确定的;化学成分和表层的亲水性是通过XPS(光电子能谱)和接触角得到的。Sanchuan Yu研究结果表明,在维持膜的选择性稳定或提高的同时,薄膜复合型膜的渗透性有效的增加了。改善后的膜的水通量在海水脱盐时明显变大了,同时维持很高的脱盐率。尼龙-尿烷海水反渗透膜的最优反渗透性能是在于拥有一个具有某一交联剂选择性的表层和一个相对疏水的表面。 2.2反渗透膜分离机理模拟 由于实验技术方面的困难,通常人们很难从原子水平上搞清楚其微观结构,以及水分子和离子渗透过膜的机理,这就使得聚合物单体化学结构的选择或是聚合过程的优化变得有些盲目,所以有学者将分子动力学模拟的方法应用到了反渗透膜的研究中。Harder[5]等则通过一种新型的基于分子动力学的方法,模拟了间苯二胺和均苯三甲酰氯两种典型单体之间的界面聚合反应,以及水分子在所生成分离层中的渗透过程,最后得出的扩散系数和渗透通量的理论值与实验结果具有相同的数量级。 -- -- 2.3反渗透膜污染 膜污染一直以来就是人们关注的热点问题,它影响着膜的稳定运行和出水水质,并将缩短膜的使用寿命,因此被认为是制约膜技术广泛应用的关键因素。目前,人们在研制和开发新型反渗透膜的同时,也对膜污染问题进行了更加深入的研究,并不断寻找解决办法。有学者发现浓差极化与胶体污染物在反渗透膜表面沉积这两种常见的现象之间存在一种偶合作用,并且可以通过利用那些不易于沉积的胶体颗粒作为“移动搅拌器”来减少污染,提高反渗透膜在脱盐方面的性能。 由微生物在膜面生长造成的反渗透膜污染现象很普遍,它会使水分子渗透过膜所需要的压力急剧上升,这一问题可以通过一些常用的生物杀伤剂,例如活性氯、臭氧以及紫外线灭菌等方法得以解决,但是频繁的化学洗涤又会降低膜的使用寿命,并给系统中引入一些灭菌副产物,例如臭氧处理富溴盐废水的过程中产生的溴酸盐就被世界卫生组织和美国环境保护署列为一种致癌物。所以需要针对各自的实际情况选择最优的预处理过程。 无机盐也是一类很重要的污染物,对于这方面机理的研究也很多,主要集中在考察错流流率和压力等操作参数,以及膜孔隙率和粗糙度等对无机盐在膜表面结晶的影响,然而也有少数学者认为污染过程还会受到膜组件的几何构型以及膜材料等因素的影响。膜剖析(membrane autopsy)是寻找膜污染成因的一种常用方法,它通过分析污染后的膜元件,寻找污染的原因及其机理,当污染过程很复杂而又对其缺乏了解时,这项技术就显得非常有效。Mohamedou[6]等通过膜剖析对一套老旧的反渗透膜组件的污染过程进行了研究,评估了它的膜老化程度,最终使得膜组件的再生变得可能。 除了实验考察膜污染过程的研究之外,许多学者还从理论的角度全面分析了反渗透膜过程中出现的污染问题。Hoek[7]等通过模拟一个大型反渗透装置的运行过程,研究了传质动力学、膜污染以及反渗透技术中的工程放大问题。他们所建立的模型为更加深入地研究大型反渗透过程提供了有力工具。另外,他们还指出利用一些新颖的监测方法,可以帮助我们进一步了解反渗透过程中的影响因素,有利于全面和综合的研究反渗透系统。 2.4反渗透膜系统能耗 目前,相对于其他传统的化工分离技术,反渗透膜技术在能耗方面仍然具有-- -- 很大的优势,Madaeni[8]等研究发现,在食品加工业中,与传统的蒸发工艺相比,通过反渗透膜浓缩果汁中糖分的能耗被大幅度的降低;除此之外,反渗透膜分离过程也避免了因为加热蒸发所导致的糖分损失。脱盐作为反渗透膜技术的传统应用领域,如何降低能耗一直备受关注。虽然提高反渗透系统能量利用效率是减轻反渗透大规模利用带来的能源压力的一个有效途径,但是从根本上解决这一问题则需要另辟蹊径,将可再生能源引入反渗透系统。目前,已经有人提出以太阳能、风能和水能等可再生能源作为反渗透系统的供能源,并且已经对实施这种构想的基本原则、装置设计、设备安装、数学模型计算以及经济可行性等方面做了分。 3 微滤和超滤技术研究现状(张振斌、王伦) 低压膜微滤(MF)和超滤(UF)主要用于饮用水净化和工业废水处理。超滤所用的膜为非对称膜,其表面活性分离层平均孔径约为10-200Å,能够截留分子量为500以上的大分子与胶体微粒,所用操作压差在0.1-0.5MPa。原料液在压差作用下,其中溶剂透过膜上的微孔流到膜的低限侧,为透过液,大分子物质或胶体微粒被膜截留,不能透过膜,从而实现原料液中大分子物质与胶体物质和溶剂的分离。微滤所用的膜为微孔膜,平均孔径0.02-10μm,能够截留直径0.05-10μm的微粒或分子量大于100万的高分子物质,操作压差一般为0.01~0.2MPa。原料液在压差作用下,其中水(溶剂)透过膜上的微孔流到膜的低压侧,为透过液,大于膜孔的微粒被截留,从而实现原料液中的微粒与溶剂的分离。微滤过程对微粒的截留机理是筛分作用,决定膜的分离效果是膜的物理结构,孔的形状和大小。下面介绍一下微滤和超滤技术在水处理工艺中的应用进展。 3.1 饮用水净化复合工艺 近年来,有些地区饮用水源受到污染,微量污染物含量超标,传统的饮用水净化技术已经不能满足要求。通过不同的预处理方式(如混凝、砂滤、生物氧化、臭氧氧化等),并结合MF/UF工艺,通常能有效去除原水中主要的污染物,同时缓解膜污染。Park[9]等研究了饮用水处理过程中混凝对后续UF的影响,并建议根据原水的特点选取合适的膜,并投加适量的混凝剂,可以有效去除原水中的胶体物质和有害污染物。对于实际水厂, Park等建议使用自动控制投加混凝剂装置。在饮用水净化UF工艺前端设置快速生物膜过滤单元,也可以去除进水中的天然有机物,减轻膜污染。Huck等研究了不同的空床接触时间(5、10、15 min)