当前位置:文档之家› 6.1二次型及其矩阵表示、合同矩阵(全)

6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型

§1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形

§3 二次型与对称矩阵的正定性

§1 二次型及其矩阵表示、合同矩阵

定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式

()

n x x x f ,,,21 n

n x x a x x a x x a x x a x a 1141143113211221

112222+++++= n

n x x a x x a x x a x a 224224322322

22222+++++ 2n

nn x

a +当系数属于数域F 时,称为数域F 上的一个n 元二次型。本章讨论实数域上的n 元二次型,简称二次型。

n

n x x a x x a x a 33433423

3322++++

22212111222

121213131,12111

12121122121222

2221122,1

222(,,,)n nn n

n n n n

n n n n

n n n n nn n

n

ij

i j

i j f x x x a x a x a x

a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x

a

x x --==++

+++++=++++++++

++++=

∑i j j i ij i j i j i j j i i j

22212111222

121213131,12111

12121122121222

2221122,1

222(,,,)n nn n

n n n n

n n n n

n n n n nn n

n

ij

i j

i j f x x x a x a x a x

a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x

a

x x --==++

+++++=++++++++

++++=

∑i j j i ij i j i j i j j i i j

2121111212112

2121222222

1122(,,

,)n n n n n n n n n nn n

f x x x a x a x x a x x a x x a x a x x a x x a x x a x =+++++++

++++111112

21()n n x a x a x a x

+++2211222

2

()n n

x a x a x a x ++++1122()n n n nn n x a x a x

a x +++1111221211222

2121122(,,

,)n n n n n n n nn n a x a x a x a x a x a x x x x a x a x a x ++

+??

?

+++

?

= ?

?

+++??111211212222121

2

(,,,)n n n n n nn n a a a x a a a x x x x a a a x ???? ??? ???= ??? ???????

T

x Ax

=

其中A = (a ij )n ×n , x = (x 1, x 2, ···, x n )T

A 为对称矩阵,称A 为二次型对应的矩阵,A 的秩为二次型的秩。

二次型和它的矩阵是互相唯一确定的。即有一个二次型就有唯一的对称矩阵A ;而对称矩阵A 对应唯一的二次型。

,

)(T

1

1

21Ax x x

x a ,x ,,x x f j

i n

j ij n

i n ==∑∑

==

例如,二次型的矩阵是

()3

222

31212132,,,x x x x x x x x x x f n -++= ???????

? ??--=02

32

12322121210A A 是一个对称矩阵。

反之,对称矩阵A 所对应的二次型为

()()????? ?????????

?

??--==32132132102

32

12322121210,,,,x x x x x x Ax x x x x f T

3

222

312132x x x x x x x -++=

解析几何中,为了确定二次方程

ax 2+ bxy + cy 2=d (a ,b ,c 不全为零)

所表示的曲线的性态,通常利用旋转变换公式:

选择适当的θ,可使上面的方程化为

??

?'+'='-'=θ

θθθcos sin sin cos y x y y x x 在旋转变换公式中,θ选定后sin θ,cos θ是常数。x ,y 由x‘,y’ 的线性表达式给出。

这一线性表达式称为线性变换。

ax '2 + by'2 = d ′

定义2关系式

???????+++=+++=+++=n

nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111,,称为由变量n x x x ,,,21 到变量n y y y ,,,21 变量替换,简称线性变换。

的一个线性

矩阵

???

??

?

?

??=nn n n n n c c c c c c c c c C 212222111211称为线性变换的矩阵,0≠C 时称线性变换为非退化的线性变换或可逆的线性变换。

如上例中,因为

01cos sin sin cos ≠=-θθ

θ

θ

,所以???'+'='-'=θ

θθθcos sin sin cos y x y y x x 是一个非退化的线性变换。

设????

??

? ??=??????? ??=n n y y y y x x x x 2121,是两个n 元变量,则线性变换可以写

成以下矩阵形式:

Cy

x =代入Ax x f T

=有

()()By

y ACy C y Cy A Cy Ax x f T

T

T

T

T

====其中(

)

B A

C C AC C B AC C B T

T

T

T

T ====,,因此By y T

是以B

为矩阵的y 的n 元二次型。

如果线性变换是非退化线性变换,By y T

有下面的形状:

2222211r

r y

d y d y d ++我们称这个形状的二次型为二次型的一个标准形。易知,()()

B R A R r ==

例1 将二次型

()23

3222

312121

3214222,,x

x x x x x x x x x x x f +++++=化为标准形。

解:由于标准形是平方项的代数和,可通过配方法将二次型改写成

2

3

32223121214222x x x x x x x x x f +++++=()()()23

3222

2

322

3232121

422x

x x x x x x x x x x x ++++-++++=()3

222

2

3212x x x x x x ++++=()()23

2

322

321x

x x x x x -++++=①

令?????+

++

=

==3

332

21

3

2

1x x x x x x y y y 即???

??-

-

=

==3

32

21

3

21

y y y y y x x x 0

11

001100

11≠=--=C 代入式①中,得原二次型的标准形

23

2221y

y y f -+=

其矩阵??

?

?

?

??-=100010001B 因为原二次型的矩阵为??

?

?? ??=121221111A 线性变换的矩阵为0

1C 100110011≠=???

?

? ??--=且C 通过计算可以验证????

?

??-==100010001B AC C T

是对角矩阵,且

23

222

1y

y y By y f T

-+==

可见,要把二次型化为标准形,关键在于求出一个非奇异矩阵C,使得C T AC是对角矩阵。

上例是通过配方方法间接找到非奇异矩阵C。一般说来,这种方法较麻烦,下面我们将介绍初等变换和正交变换的方法求矩阵C。

定义3设A,B为两个n阶矩阵,如果存在n阶非奇异矩阵C,使得

T

=

C AC B

则称矩阵A合同于矩阵B,或A与B合同,记为

?

A B

例如

111100122010121001???? ? ?? ? ? ? ?-????

合同关系具有以下性质:①A

A

T

E AE A

因为②A B B

A

?(

)

1

1

T

T

C AC B C

BC A

--=?=因为③,A

B B

C A C

?()()1

12

21212,T

T T C AC B C BC C C C A C C C

==?=因为

矩阵合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12m P Q Q Q = 。 此时711T T T m n P Q Q Q -= 边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A 与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12,n λλλ ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵,,Q P 使得 112[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

线性代数中的合同关系、正定矩阵

什么是线性代数中的合同?惯性定律? “合同”是矩阵之间的一种关系。两个n阶方阵A与B叫做合同的,是说存在一个满秩n阶方阵P,使得P′AP=B.“合同”这种关系,是一种“等价关系”。按照 它可以对n阶方阵的全体进行分类。对于n阶实对称矩阵而言,线性代数中有两个结果。 ①每个n阶实对称矩阵,都一定与实对角矩阵合同,并且此时P也是实的。 ②对于一个n阶实对称矩阵A,与它合同的实对角矩阵当然不只一个,(相应的P也变化)。但是这些实对角矩阵的对角元中,正数的个数是一定的(叫A的正惯性指数),负数的个数也是一定的(叫A的负惯性指数)。 结果②就是“惯性定理”。 一个矩阵是正定矩阵的充要条件是:矩阵的主对角线元素全大于0.这个命题是否正确? 不对,反例: 1 2 2 1 只有主对角矩阵才能说对角元素全大与0就正定 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n) 都有XMX′>0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 1.n阶对称矩阵A正定的充分必要条件是A的n 个特征值全是正数。

证明:若,则有 ∴λ>0 反之,必存在U使 即:A正定 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 特征值都在主对角线上运算你知道的吧。

矩阵的合同-等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L 1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλL )?(12,,,m βββL )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =??;r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>?L L 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 200509113 李娟娟 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ= ,12(,,,)m B βββ= 1、若向量组(12,,,m βββ )是向量组(12,,,n λλλ )的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ )?(12,,,m βββ )则有矩阵A,B 同型且()()~,,r A r B A B A B A B =?? r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A,B都是数域F上的n 阶矩阵,如果存在数域F 上的一个n阶可逆矩阵P,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111 T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以A B ?, 从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- ??? 1||||||P I A P λ-=- ? ||I A λ=- 注①合同不一定有相同特征多项式 定理4:如果A与B 都是n 阶实对称矩阵,且有相同特征根,则A 与B 相似且合同 论:设A ,B 为特征根均为12 ,n λλλ,因为A 与B 实对称矩阵,所以则在n 阶正 矩阵, ,Q P 使得 11 2[]Q AQ λλ-= 11[]n P BP λλ-= 从而有11Q AQ P BP --=

二次型的矩阵表示

§1 二次型的矩阵表示 一、二次型的定义 1.问题的引入 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 ax 2+2bxy+cy 2=f (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ? ?????+=-=θθθθcos sin sin cos ' '''y x y y x x (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含有平方项。二次齐次多项式不但在几何中出现,而且在数学的其它分支以及物理、力学中也常常会碰到。这一章就是来介绍它的一些最基本的性质。 2.n 元二次型 设P 是一数域,一个系数在数域P 中的x 1,x 2,…,x n 的二次齐次多项式 f (x 1,x 2,…,x n ) = a 1121x +2a 12x 1x 2+…+2a 1n x 1x n +a 222 2x +… +2a 2n x 2x n +…+a nn x 2n (3)

称为数域P 上的一个n 元二次型,简称二次型。例如 x 21+x 1x 2+3x 1x 2+2x +4x 2x 3+3x 2 3 就是有理数域上的一个三元二次型。为了以后讨论上的方便,在(3)中,x i x j (i

二次型及其矩阵

第五章 二次型 在解析几何中,为了便于研究二次曲线 122=++cy bxy ax 的几何性质,可以选择适当的坐标旋转变换 ? ??'+'='-'=θθθ θcos sin sin cos y x y y x x 把方程化为标准形式 122='+'y c x m . 这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论n 个变量的二次多项式的化简问题. 第一节 二次型及其矩阵 分布图示 ★ 引言 ★ 二次型的定义 ★ 例1 ★ 二次型的矩阵形式 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 线性变换 ★ 例6 ★ 矩阵的合同 ★ 内容小结 ★ 习题5-1 内容要点 一、二次型的概念 定义1 含有n 个变量n x x x ,,,21 的二次齐次函数 n n n n n n n n n nn n x x a x x a x x a x x a x x a x a x a x a x x x f 1,12232231121122 222221112122222),,,(--+++++++++++= 称为二次型. 当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型.在本章中只讨论实二次型. 只含有平方项的二次型 2222211n n y k y k y k f +++= 称为二次型的标准型 (或法式). 二、二次型的矩阵 取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=于是

∑== ++++++++++++=n j i j i ij n nn n n n n n n n n n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f 1 ,22211222 22212211121122 11121),,,( ) ()()(22112222121212121111n nn n n n n n n n x a x a x a x x a x a x a x x a x a x a x ++++++++++++= . ),,,(),,,(212 122221 112 1121221122 22121121211121AX X x x x a a a a a a a a a x x x x a x a x a x a x a x a x a x a x a x x x T n nn n n n n n n nn n n n n n n n =??? ? ? ? ? ????????? ??=? ?????? ??+++++++++= 其中 ?? ? ? ? ? ? ??=???? ?? ? ??=nn n n n n n a a a a a a a a a A x x x X 2 122221 1121121, . 称AX X x f T =)(为二次型的矩阵形式. 其中实对称矩阵A 称为该二次型的矩 阵.二次型f 称为实对称矩阵A 的二次型. 实对称矩阵A 的秩称为二次型的秩. 于是,二次型f 与其实对称矩阵A 之间有一一对应关系. 三、线性变换 定义2 关系式 ????? ??+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 21122212121121111 称为由变量n x x x ,,,21 到n y y y ,,,21 的线性变换. 矩阵 ?? ? ? ? ? ? ??=nn n n n n c c c c c c c c c C 2 1222 21112 11 称为线性变换矩阵. 当0||≠C 时,称该线性变换为可逆线性变换. 对于一般二次型AX X X f T =)(,我们的问题是:寻求可逆的线性变换CY X =将二次型化为标准型,将其代入得

合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析 在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C A C =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理: 因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下 让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图 而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义 下面我们再来看看“合同”概念。《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C A C =。而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容: 双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。为了研究着这种特殊的映射在空间下的性质,我们有引进了双线性函数的“度量矩阵”,并以此矩阵来研究双线性函数的有关性质。于是双线性函数与空间的一组基、一个n 阶矩阵也建立起了一种一一对应的关系,如图 1'n A n T T AT T AT -=对于任意一个级实对称矩阵,都存在一个级正交矩阵,使得 → 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上线性变换空间的一组基一个矩阵线性变换→ 对空间元素的作用直接体现在基上变换的运算可反映在矩阵的运算上双线性函数空间的一组基一个矩阵双线性函数

矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别 一、基本概念与性质 (一)等价: 1、概念。若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ?。 2、矩阵等价的充要条件: A B ?.{P Q A B ?同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立 3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。 (二)合同: 1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ?P T AP B =成立,则称A,B 合同,记作A B ?该过程成为合同变换。 2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ??二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。 (三)相似 1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。 2、矩阵相似的性质:

~A B 11~,~,~(,) |E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-?=前提,均可逆即有相同的特征值(反之不成立) r(A)=r(B) 即的逆相等 |A|=|B| 3、矩阵相似的充分条件及充要条件: ①充分条件:矩阵A,B 有相同的不变因子或行列式因子。 ②充要条件:~()()A B E A E B λλ?-?- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ= 1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关 组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ?。 2、若m=n ,两向量组(12,,,n λλλ)?(12,,,m βββ)则有矩阵A,B 同 型且()()~,,r A r B A B A B A B =??r()()A r B A B =??。 3、若r()()A B A r B ??=?两向量组秩相同,?两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ?≠>? 综上所述:矩阵等价与向量等价不可互推。 (二)、矩阵合同。相似,等价的关系。 1、联系:矩阵的合同、相似、等价三种关系都具有等价关系,因为三者均具有自反性、对称型和传递性。 2、合同、相似、等价之间的递推关系

二次型及其矩阵表示

第六章 二次型 第一讲 二次型及其矩阵表示、标准形 教 学 目 的:通过本节的学习,使学生了解并掌握二次型的基本概念及其矩 阵表示方法. 教学重点与难点:二次型的矩阵表示 教学计划时数:2课时 教 学 过 程: 一、二次型的概念 定义1:含有n 个变量n x x x ,,,21 的二次齐次函数 22 2 121112221212112323221,1(,, ,)22222n nn n n n n n n n n n f x x x a x a x a x a x x a x x a x x a x x a x x --=+++++ ++++++ (1) 称为二次型. 附:1、当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型; 2、ij a 可以等于0,即(1)式中的各项都存在. 例1 ()2 2 2 12312313,,2454f x x x x x x x x =++-;()123121323,,f x x x x x x x x x =++ 都为实二次型; 二、二次线性与对称矩阵 在(1)式中,取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=令12(,,,)T n x x x x =,则(1) 式可化为 11121121 222212121 2 (,,,)(,, ,).n n T n n n n nn n a a a x a a a x f x x x x x x x Ax a a a x ???? ??? ??? == ??? ??????? 称12(,, ,)T n f x x x x Ax =为二次型的矩阵形式,记为()T f x x Ax =,其中实对称矩阵A 称 为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型.实对称矩阵A 的秩称为二次型f 的秩,即()()R A R f =.

什么是合同矩阵

什么是合同矩阵 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B,则称方阵A合同于矩阵B. 一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 相似矩阵与合同矩阵的秩都相同。 定义 合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得 则称方阵A与B合同,记作A?B。 在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。 性质 合同关系是一个等价关系,也就是说满足: 1、反身性:任意矩阵都与其自身合同; 2、对称性:A合同于B,则可以推出B合同于A; 3、传递性:A合同于B,B合同于C,则可以推出A合同于C; 4、合同矩阵的秩相同。 矩阵合同的主要判别法: 设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.

设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。 正定二次型 主条目:正定二次型 半正定二次型:其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。 一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。 正定二次型:其对应的对称矩阵在实数域内合同于单位阵。 一个n元二次型是正定二次型,当且仅当它的正惯性指数是n。正定二次型对应矩阵一定是可逆矩阵,且行列式大于0。 同样的可以定义半负定、负定和不定的二次型。 合同矩阵发展史 1855 年,埃米特(C.Hermite,1822-1901) 证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如称为埃米特矩阵的特征根性质等。后来,克莱伯施 (A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并得出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。

矩阵的合同变换

矩阵的合同变换 摘要:矩阵的合同变换是高等代数矩阵理论中,基本交换。在《高等代数》里,我们仅讨论简单而直接的变换,而矩阵的合同变换与矩阵相似变换,二次型等有着诸多相同性质和联系。 关键词:矩阵 秩 合同 对角化 定义1:如果矩阵A 可以经过一系列初等变换变成B ,则积A 与B 等价,记为A B ? 定义2:设A ,B 都是数域F 上的n 阶方阵,如果存在数域F 上的n 阶段可逆矩阵P 使得1B P Ap -=,则称A 和B 相似A B 定义3:设A ,B 都是数域F 上的n 阶矩阵,如果存在数域F 上的一个n 阶可逆矩阵P ,使得T P AP B = 那么就说,在数域F 上B 与A 合同。 以上三个定义,都具有自反性、传逆性、对称性、 性。 定理1:合同变换与相似变换都是等价变换 证明:仅证合同变换,相似变换完全相似 因为P 可逆,所以P 存在一系列初等矩阵的乘积,即12 m P Q Q Q =。 此时71 1T T T m n P Q Q Q -=边为一系列初等矩阵的乘积 若111T T T T m n m B P AP Q Q Q AQ Q -== 则B 由A 经过一系列初等变换得到。所以 A B ?,从而知合同变换是等价变换。 定理2:合同变换与相似变换,不改变矩阵的秩 证明:由 知,合同变换与相似变换都是等价变换,所以不改变秩 定理3:相似矩阵有相同特征多项式 证明:共1A B B P AP -= 1||det ||del I B I P AP λλ--=- 又因为I λ为对称矩阵 所以11det ||||||I P AP P I A P λλ---=- 1||||||P I A P λ-=- ||I A λ=- 注①合同不一定有相同特征多项式

6.1二次型及其矩阵表示、合同矩阵(全)

第六章二次型 §1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形 §3 二次型与对称矩阵的正定性

§1 二次型及其矩阵表示、合同矩阵

定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式 () n x x x f ,,,21 n n x x a x x a x x a x x a x a 1141143113211221 112222+++++= n n x x a x x a x x a x a 224224322322 22222+++++ 2n nn x a +当系数属于数域F 时,称为数域F 上的一个n 元二次型。本章讨论实数域上的n 元二次型,简称二次型。 n n x x a x x a x a 33433423 3322++++

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

22212111222 121213131,12111 12121122121222 2221122,1 222(,,,)n nn n n n n n n n n n n n n n nn n n ij i j i j f x x x a x a x a x a x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a x a x x --==++ +++++=++++++++ ++++= ∑i j j i ij i j i j i j j i i j

矩阵的等价,合同,相似的联系与区别

目录 摘要 ............................................................................................................... I 引言 . (1) 1矩阵间的三种关系 (1) 1.1 矩阵的等价关系 (1) 1.2 矩阵的合同关系 (1) 1.3. 矩阵的相似关系 (2) 2 矩阵的等价、合同和相似之间的联系 (3) 3矩阵的等价、合同和相似之间的区别 (5) 结束语 (6) 参考文献 (6)

摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化. 关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件

引言: 在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量. 1矩阵间的三种关系 1.1 矩阵的等价关系 定义1 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ = 由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =. 性质1 (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ? (3)传递性:即若A B ?,B C ?,则A C ? 定理1 若A 为m n ?矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和 Q (n 阶),使得00 0r m n I PAQ B ??? == ???.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ?矩阵,则A B ?当且仅当()()r A r B =. 1.2 矩阵的合同关系 定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵 p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩 阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件: (1) 矩阵A 与B 不仅为同型矩阵,而且是方阵. (2) 存在数域p 上的n 阶矩阵p ,T P AP B =

二次型及其矩阵复习课程

二次型及其矩阵

第五章 二次型 在解析几何中,为了便于研究二次曲线 122=++cy bxy ax 的几何性质,可以选择适当的坐标旋转变换 ? ??'+'='-'=θθθθcos sin sin cos y x y y x x 把方程化为标准形式 122='+'y c x m . 这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论n 个变量的二次多项式的化简问题. 第一节 二次型及其矩阵 分布图示 ★ 引言 ★ 二次型的定义 ★ 例1 ★ 二次型的矩阵形式 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 线性变换 ★ 例6 ★ 矩阵的合同 ★ 内容小结 ★ 习题5-1 内容要点 一、二次型的概念 定义1 含有n 个变量n x x x ,,,21 的二次齐次函数 n n n n n n n n n nn n x x a x x a x x a x x a x x a x a x a x a x x x f 1,12232231121122222221112122222),,,(--+++++++++++= 称为二次型. 当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型.在本章中只讨论实二次型. 只含有平方项的二次型 2222211n n y k y k y k f +++= 称为二次型的标准型(或法 式). 二、二次型的矩阵 取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=于是

∑== ++++++++++++=n j i j i ij n nn n n n n n n n n n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f 1,222112222221221112112211121),,,( )() () (22112222121212121111n nn n n n n n n n x a x a x a x x a x a x a x x a x a x a x ++++++++++++= .),,,(),,,(212 122221 11211212 2112222121121211121AX X x x x a a a a a a a a a x x x x a x a x a x a x a x a x a x a x a x x x T n nn n n n n n n nn n n n n n n n =??????? ????????? ??=??????? ??+++++++++= 其中 ?????? ? ??=??????? ??=nn n n n n n a a a a a a a a a A x x x X 21222211121121,. 称AX X x f T =)(为二次型的矩阵形式. 其中实对称矩阵A 称为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型. 实对称矩阵A 的秩称为二次型的秩. 于是,二次型f 与其实对称矩阵A 之间有一一对应关系. 三、线性变换 定义2 关系式 ???????+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 21122212121121111 称为由变量n x x x ,,,21 到n y y y ,,,21 的线性变换. 矩阵 ?????? ? ??=nn n n n n c c c c c c c c c C 212222111211 称为线性变换矩阵. 当0||≠C 时,称该线性变换为可逆线性变换. 对于一般二次型AX X X f T =)(,我们的问题是:寻求可逆的线性变换CY X =将二次型化为标准型,将其代入得 AX X X f T =)(Y AC C Y CY A CY T T T )()()(==

矩阵的等价,相似 合同的关系及应用

目录 摘要 (1) 1引言 (2) 2矩阵间的三种关系 (2) 2.1 矩阵的等价关系 (2) 2.2 矩阵的合同关系 (3) 2.3. 矩阵的相似关系 (3) 3 矩阵的等价、合同和相似之间的联系与区别 (4) 3.1矩阵的相似与等价之间的关系与区别 (4) 3.2 矩阵的合同与等价之间的关系与区别 (5) 3.2 矩阵的合同与等价之间的关系与区别 (5) 4矩阵的等价、合同和相似的应用 (6) 4.1矩阵等价的应用 (7) 4.2矩阵相似的应用 (9) 4.3矩阵合同的应用 (9) 4.4三种关系在概率统计中的应用 (10) 5结论 (12) 结束语 (12) 参考文献 (13)

摘 要: 本文主要了解矩阵的三种的关系的性质、联系、区别及应用,总结它们之间的结论和定理并应用到各个相应的领域。并且详细说明了三者的相同点和不同点。 关键字: 矩阵的等价关系及应用,矩阵的相似关系及应用,矩阵的合同关系及应用 1.引言 高等代数中我们讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.那么为了更好的掌握它们,我们不仅要了解它们的定义、性质还要了解它们间的异同点,总结它们的规律,并且要了解它们在各个领域的应用,我们需要更好的知道在什么条件下等价、合同、相似是可以相互转化的,加什么条件才可以相互转化,如果不能相互转化,那么你能找到相应的特例吗?另外,三种矩阵的应用你知道它具体应用到什么领域吗?是如何应用的? 2.矩阵的三种关系 2.1矩阵的等价关系 定义2.1.1 : 两个s n ?矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使得B PAQ = 矩阵A 与B 等价必须具备的两个条件: (1)矩阵A 与B 必为同型矩阵(不要求是方阵). (2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使B PAQ =. 2.1.2矩阵等价的性质: (1)反身性:即A A ?. (2)对称性:若A B ?,则B A ?. (3)传递性:若A B ?,B C ?,则A C ?. (4)A 等价于B 的充要条件是秩(A )=秩(B ) (5)设A 为m ×n 矩阵,秩(A )=r ,则A 等价于???? ??00 0r E ,即存在m 级可逆矩阵P ,n 级可逆矩阵Q , 使 ???? ??=00 0r E PAQ . (6)(Schur 定理) 任何n 级复方阵A 必相似于上三角形矩阵,即A 相似于????? ? ?n λλ0 *1 其中n λλ,,1 为矩阵A 的特征值. 定理2.2.1: 若A 为m n ?矩阵,并且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),

矩阵的合同与相似及其等价条件汇总

矩阵的相似与合同及其等价条件研究 (数学与统计学院 09级数学与应用数学一班) 指导老师:王晶晶 引言 矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用[1-10],起着非常重要的作用,能够把要处理的问题简单化[9],本文对矩阵的等价,合同,相似进行了简单的介绍并对其判别方法给了具体的例子进行解释说明,对矩阵的应用学习有一定的帮助. 1 矩阵的等价与相似及其合同的基本概念 1.1矩阵等价的定义[1] 定义 1.1 如果矩阵A 可以有矩阵B 经过有限次初等变换得到,称A 与B 是等价的. 由于要与矩阵的相似,合同进行比较,上述概念可以约束条件得到: 定义1.2 如果n 阶矩阵A 可以由n 阶矩阵B 进过有限次初等变换得到,则称A 与B 是等价的. 根据初等变换和初等矩阵的关系以及可逆矩阵的充分必要条件,可以用数学语言描述: 定义1.3 设矩阵A ,B 为n 阶矩阵,如果存在n 阶可逆矩阵P 和Q ,使得B PAQ =,则称矩阵A 与B 等价,记作A ∽B . 1.2 矩阵相似的定义[2] 定义 1.4 设矩阵A ,B 为n 阶矩阵,如果存在一个是n 阶可逆矩阵P ,使得 B AP P =-1,则称矩阵A 与矩阵B 相似,记作A ~B . 1.2.1 n 阶矩阵的相似关系,具有下列性质[3]: 性质1.1 反身性,即任一n 阶矩阵A 与自身相似. 性质1.2 对称性,即如果A ~B ,则B ~A . 性质1.3 传递性,如果A ~B ,B ~C ,则A ~C . 性质1.4 P A k AP P k P A k A k P 221122111)(+=+--. (2 1,k k 是任意常数)

相关主题