机器人避障超声波测距系统第一章绪论1.1 课题研究的背景及意义机器人技术是在新技术革命中迅速发展起来的一门新兴学科,它在众多的科技领域与生产部门中得到了广泛的应用,并显示出强大的生命力。
它是集精密机械、光学、电子学、检测、自动控制、计算机和人工智能等技术于一体,形成的一门综合性的新技术学科。
机器人的发展有很长的历史,早在三国时代,诸葛亮造的“木牛流马”就是古代机器人的一种雏形。
机器人(robot)一词来源于 1920 年捷克作家卡雷尔·查培克所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。
后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。
在机器人发展历史上,存在两条不同的技术路线:一条是日本和瑞典所走的“需求牵引,技术驱动”,他们把美国开拓的机器人,结合工业发展的需求,开发出一定系列特定应用的机器人,如弧焊、点焊、建筑等等,从而形成了庞大的机器人产业;另一条是把机器人作为研究人工智能的载体。
看成是计算机科学的一部分,单纯从技术上仿人的某些功能出发研究机器人。
自从为了抓取放射性材料而设计制造的第一台遥控机械手诞生至今已经有50多年了,而六十年代第一台工业机器人问世也40多年了。
之所以当初称之为工业机器人是为了同虚构的机器人及玩具机器人加以区别。
目前所说的机器人大多指工业机器人。
第一代机器人,主要指只能以“示教-再现”方式工作的机器人。
示教内容为机器人操作机构的空间轨迹、作业条件、作业顺序等。
第二代机器人具有一定的感觉装置,能获取作业环境、操作对象的简单信息,通过计算机处理、分析,机器人作出一定的推理,对动作进行反馈控制,表现出低级的智能。
第三代机器人是指具有高度适应性的自治机器人,它具有多种感知功能,可进行复杂的逻辑思维判断决策,在作业环境中独立行动。
作为“第三代机器人”的智能机器人是这样一类机器人:机器人本身能对所处的工作环境、工作对象及其状态做出反映,它能根据人给予的指令和“自身”对外界的了解来独立的决定工作方法,利用操作机构和移动机构实现任务目标,并能适应工作环境的变化。
自主式移动机器人也属于智能机器人。
关于移动机器人的研究涉及许多方面。
首先,要考虑移动方式,可以是轮式的、履带式的、腿式的,对于水下移动机器人则是推进器。
其次,必须考虑驱动器的控制,以使机器人达到期望的行为。
第三,必须考虑导航和路径规划,对于后者,有更多的方面考虑,如传感器信息融合、特征提取、避障和环境映射等。
因此,移动机器人是一个集环境感知、动态决策、行为控制与执行等多功能于一体的综合系统。
在移动机器人自主行走的过程中,不可避免的会遇到一些障碍物,所以灵活、实时的避开这些障碍物是移动机器人必须拥有的一种基本能力。
为了实现这种能力,移动机器人必须通过外部传感器来收集周边环境的信息数据并通过这些信息建立起外部环境的模型,从而实现类似于人的避障行为。
在移动机器人环境探测的过程中,人们多采用视觉系统探测周围环境,并利用图象信号分析处理技术获得环境信息,从而引导机器人的运动。
比如,由浙江大学研究开发的以美国 TROBOT 公司ATRV-2 为平台的移动机器人,就是以放置在移动机器人上方的彩色CCD摄像机和安装在内部微机主板上的图象采集卡组成的视觉系统来探测前方障碍物。
采用视觉系统避障可以获得较完整的环境信息,但由于图象处理运算量大,需要高性能的信号处理设备,致使这类系统体积较大、能耗高、实时性差。
近年来,为了克服单纯视觉系统在应用上的不足,人们开始研究采用其他非摄像类传感器探测环境信息,直接采用多个廉价超声波传感器来进行测量。
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。
由于移动机器人具有一般机器人所不具备的移动能力,从而使之更具备“代替人”作业的实力。
移动机器人在移动过程中不可避免会遇到各式各样的障碍物,灵活、实时的躲开这些障碍物是衡量其性能的关键指标。
具有避障功能的移动机器人拥有相当高的社会价值,被大量应用于航天、军事、制造业、医疗、交通等。
比如在制造业中,柔性装配系统(FAS)是柔性制造系统的主要组成部分。
近年来,为响应产品换代的频繁变化,FAS的构形发生了很大变化,发达工业国家已出现了动态可重构形的柔性装配系统,在这类系统中,众多的具有避障功能的移动机器人代替了通用的传送带。
同样具有避障功能的移动机器人能给不能行走的残疾人士带来福音。
现在,大多数残疾人士使用电子轮椅,由于驾驶这种轮椅需要相当大的技巧,对于那些残疾人士来说,灵活自如的驾驶这类轮椅将有一定的难度。
而拥有自主导航和避障能力的移动机器人将轻易的解决这类问题。
1.2国内外研究现状从 80 年代开始,美国国防高级研究计划局专门立项,制定了地面无人作战平台的战略计划。
如 DARPR 的“战略计算机”计划中的自主地面车辆计划。
能源部制定了为期10 年的机器人和职能系统计划,以及后来的空间机器人计划。
美国 NASA 研究的火星探测机器人于 1997 年登上了火星。
为了在火星上进行距离探测,又开始了新一代样机的研制,命名为 Rocky7,并在 Lavic 湖的岩溶流上和干枯的湖床上进行了成功的试验。
美国的 MDARS 项目是在著名的保安机器人 ROBART 的基础上建立的一个多移动机器人平台,后来在指定地点执行随机巡逻任务。
德国研制了一种轮椅机器人,并在乌尔姆市中心车站的客流高峰期的环境中和 1998 年汉诺威工业商品展览会大厅环境中进行了超过36 小时的考验,所表现出的性能是其它现存的轮椅机器人和移动机器人所不可比的。
对机器人自主性的挑战来自要求完成的任务以及高度非结构化和变化的环境。
在大多数室外环境中,要求机器人完全自主的完成任务目前还有一定的困难。
远程操作的半自动机器人,毫无疑问是一个发展方向,因此先进的远程操作技术是将来必需的。
国内在移动机器人的研究上起步较晚,大多数尚处于某个单项研究阶段,主要的研究工作有:清华大学智能移动机器人于1994 年通过鉴定,涉及到五个方面的关键技术:基于地图的全局路径规划研究;基于传感器信息的局部路径规划研究;路径规划的仿真技术研究;传感器技术、信息融合技术研究;智能移动机器人的设计和实现。
另外,还有中国科学院沈阳自动化研究所的 AGV和防暴机器人;中国科学院自动化自行设计、制造的全方位移动机器人视觉导航系统;哈尔滨工业大学于 1996 年研制成功了导游机器人。
随着汽车的普及,大中城市中的慢性堵塞和交通事故的增加已成为一个大的社会问题。
尤其在高速公路上行驶的汽车,时速通常在100公里每小时以上,一旦出现险情,留给驾驶员的时间是很短的,世界各地,由于雨、雾等原因引起的高速公路上的恶性交通事故时有发生。
如何利用汽车和道路的智能化来提高安全性能和交通效率已成为各发达国家关注的热点。
因此,目前移动机器人的研究开始偏向汽车的自主驾驶和辅助驾驶的研究。
部分发达国家重要的研究计划包括:●美国: IVHS(智能车辆高速公路系统)●欧洲: AVS(先进安全车辆)SSVS(超级灵巧车辆系统)VICS(车辆信息和通信系统)ARTS(先进道路运输系统)UTMS(通用交通管理系统)●中国:THMR-V(清华大学)这些计划中,各极其重要的环节是能在汽车行驶过程中探测障碍物与行人,并发出报警、自动启动刹车和避障的关键技术。
[15][17] 1.3本课题内容本文主要设计了机器人避障测距系统的硬件部分,主要有以下内容:(1)了解机器人避障超声波测距的研究背景,国内外发展状况,提出课题的研究意义。
(2)对测距技术进行研究,就当前比较流行的激光测距技术和超声波测距技术的原理进行探讨,比较两种测距的优缺点,针对本课题的实际,提出采用超声波测距的优势所在。
(3)提出系统硬件设计方案。
初步探讨了超声波传感器的工作原理。
概括性地叙述了超声波发送电路以及接收电路中的限幅、多路电子开关、放大、滤波、整流以及比较等几部分。
由于在设计过程中为了使系统稳定,必须对串扰问题进行解决,为此,还介绍了串扰处理电路的设计,还把针对本课题的AT89C52单片机控制系统进行说明。
(4)简单介绍了单片机的编程语言—C51语言及软件设计的流程图。
然后针对本课题提出软件编程方案:采用模块化设计,整个程序的编写分主程序、发射子程序、中断接收子程序、定时子程序等模块进行。
第二章机器人避障策略和测距方式的研究2.1 路径规划和避障策略所谓路径规划就是智能自主移动机器人能按照存储在其内部的地图信息,或根据外部环境所提供的一些引导(既通过对环境的实时探测所获得的信息)规划出一条路径,并能够沿着该路径在没有人工干预的情况下,移动到预定目标,同时完成预定任务。
执行这个过程的算法就是路径规划算法。
移动机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型、导航地域等因素的不同,可以分为基于地图导航、基于路标导航、基于视觉导航、基于感知器导航等。
目前还出现了其他的导航系统,如美国的GPS卫星导航系统。
本文主要研究的基于超声波传感器避障属于感知器导航。
最优路径的搜索既可以采用软件的方法,也可以根据退火算法利用硬件来实现路径规划,这种方法虽不能保证所得的路径绝对最优,但能以较小的时间代价来换取相对优化的路径;基于环境拓扑特征的路径规划可以减少对地图精确性的依赖,从而扩大路径规划的范围。
当移动机器人通过各种传感器获得一定量的周围环境信息时,如何利用这些有限的环境信息,来实现机器人的实时控制,一直是机器人研究者所关心的一个问题,这也是移动机器人进行实时避障所必须解决的一个难题。
为此,许多新颖而实用的控制算法被提出来,在一定程度上解决了这个问题。
他们一般能分为两类:全局规划与局部控制。
在此,对几种比较常用的控制算法作出简单的介绍。
由于移动机器人在避障过程中需要较强的实时性,所以要求控制算法具有较强的处理数据的能力,势场法作为全局规划方法的一种方面具有一定的优势。
对于势场法而言,每一个障碍物都由一个二维的笛卡尔栅格来表示。
目标位置对移动机器人产生一种虚拟的吸引力,而障碍物对机器人产生一种虚拟的排斥力。
这两种力的合成就决定了移动机器人的运动。
然而势场法也具有自身的缺点,主要表现在 4 个方面:(1)存在陷阱区域;(2)在相近障碍物之间不能发现路径(3)在障碍物前振荡;(4)在狭窄通道中摆动。
局部控制的方法主要应用在一个未知的环境中。
它是一种完全基于传感器信息的反映策略。
因此机器人和环境中的障碍物的绝对坐标并不需要知道,但必须了解其相对位置及关系,所以大量的传感器被利用来探测周边的环境信息。