当前位置:文档之家› DSP综述(精)

DSP综述(精)

《数字信号处理》题目:数字信号处理过去、现在和未来学号:1201120261姓名:卓震数字信号处理过去、现在和未来摘要:数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

数字信号处理技术发展迅速、应用范围日益扩广诸因素之一就是数字信号处理器的出现。

本综述阐述了数字信号处理的发展历史、研究的热点问题和未解决的问题等。

关键词:数字信号、DSP、数字信号处理器● 1引言数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。

数字信号处理是把信号用数字或符号表示成序列,通过计算机或通过信号处理器设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。

例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。

信号处理技术一直用于转换或产生模拟或数字信号,其中应用的最频繁的领域就是信号的滤波。

此外,从数字通信、语音、音频和生物医学信号处理到检测仪器和机器人技术等许多领域中,都广泛地应用了数字信号处理技术。

●● 2 数字信号处理的简介 2.1 介绍数字信号处理是将信号以数字方式表示并处理的理论和技术。

数字信号处理与模拟信号处理是信号处理的两个子集。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过数模转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理机(DSP)和专用集成电路(ASIC)等。

数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。

数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。

而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发。

● 2.2 数字信号的优势数字信号处理与模拟信号处理相比,具有以下优点:(1) 信号处理的动态范围大,有比模拟信号大30dB(几十倍)的动态范围,因面有更高的精度。

(2) 数字信号处理仅受量化误差和有限字长的影响,处理过程不产生其它噪声,具有更高的信噪比。

(3)具有高度灵活性,能够快速处理、缓存和重组数据,可以时分多用、并行处理,还可以灵活地改变系统参量和工作方式,实现可编程处理。

(4)具有极好的重现性、可靠性和预见性。

(5)算法具有直接的可实现性。

(6)可以对白噪声、非平干扰和多径干扰进行相应的最佳化处理3 数字信号处理的发展历史数字信号处理技术的发展经历了四个阶段:70年代DSP是基于数字滤波和快速富立叶变换的经典数字信号处理,其系统由分立的小规模集成电路组成,或在通用计算机上编程来实现DSP处理功能,当时受到计算机速度和存储量的限制,一般只能脱机处理,主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。

80年代DSP有了快速发展,理论和技术进入到以快速富立叶变换(FFT)为主体的现代信号处理阶段,出现了有可编程能力的通用数字信号处理芯片,例如美国德州仪器公司(TI公司)的TMS32010芯片,在全世界推广应用,在雷达、语音通信、地震等领域获得应用,但芯片价格较贵,还不能进入消费领域应用。

90年代DSP技术的飞速发展十分惊人,理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段,能够用高速的DSP处理技术提取更深层的信息,硬件采用更高速的DSP芯片,能实时地完成巨大的计算量,以TI公司推出的TMS320C6X芯片为例,片内有两个高速乘法器、6个加法器,能以200MHZ频率完成8段32位指令操作,每秒可以完成16亿次操作,并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。

并推出了C2X、C3X、C5X、C6X不同应用范围的系列,使新一代的DSP芯片在移动通信、数字电视和消费电子领域得到广泛应用,数字化的产品性能价格比得到很大提高,占有巨大的市场。

在21世纪推出了性能更高的第四代处理器,包括并行处理结构DSP和超高性能DSP.如ADI公司的32位浮点处理器SHRAC系列ADSP2106X、TI公司的TMS320C4X等,以及近两年TI公司推出的并行处理定点系列TMS320C62XX、浮点系列TMS320C67XX,ADI公司的并行处理浮点系列ADSP21160和TigerSHARC系列ADSP—TSl01S、ADSP—TS201等。

目前DSP生产厂家中最有影响的是TI公司、ADI公司、AT&T公司和Motorola公司。

其中TI公司和ADI 公司的产品系列最全,市场占有率最高。

下表给出了1982年直2011年DSP发展趋势:图1 DSP发展趋势●● 4研究的热点问题 4.1数字信号处理系统无论哪方面的应用,首先须经过信息的获取或数据的采集过程得到所需的原始信号,如果原始信号是连续信号,还须经过抽样过程使之成为离散信号,再经过模数转换得到能为数字计算机或处理器所接受的二进制数字信号。

如果所收集到的数据已是离散数据,则只须经过模数转换即可得到二进制数码。

数字信号处理器的功能是将从原始信号抽样转换得来的数字信号按照一定的要求,例如滤波的要求,加以适当的处理,即得到所需的数字输出信号。

经过数模转换先将数字输出信号转换为离散信号,再经过保持电路将离散信号连接起来成为模拟输出信号,这样的处理系统适用于各种数字信号处理的应用,只不过专用处理器或所用软件有所不同而已。

● 4.2数字化处理语音信号语音信号处理是信号处理中的重要分支之一。

它包括的主要方面有:语音的识别,语言的理解,语音的合成,语音的增强,语音的数据压缩等。

各种应用均有其特殊问题。

语音识别是将待识别的语音信号的特征参数即时地提取出来,与已知的语音样本进行匹配,从而判定出待识别语音信号的音素属性。

关于语音识别方法,有统计模式语音识别,结构和语句模式语音识别,利用这些方法可以得到共振峰频率、音调、嗓音、噪声等重要参数,语音理解是人和计算机用自然语言对话的理论和技术基础。

语音合成的主要目的是使计算机能够讲话。

为此,首先需要研究清楚在发音时语音特征参数随时间的变化规律,然后利用适当的方法模拟发音的过程,合成为语言。

其他有关语言处理问题也各有其特点。

语音信号处理是发展智能计算机和智能机器人的基础,是制造声码器的依据。

语音信号处理是迅速发展中的一项信号处理技术。

● 4.3图形图像数字化处理图像信号处理的应用已渗透到各个科学技术领域。

譬如,图像处理技术可用于研究粒子的运动轨迹、生物细胞的结构、地貌的状态、气象云图的分析、宇宙星体的构成等。

在图像处理的实际应用中,获得较大成果的有遥感图像处理技术、断层成像技术、计算机视觉技术和景物分析技术等。

根据图像信号处理的应用特点,处理技术大体可分为图像增强、恢复、分割、识别、编码和重建等几个方面。

这些处理技术各具特点,且正在迅速发展中。

● 4.4自动控制机械振动信号的分析与处理技术已应用于汽车、飞机、船只、机械设备、房屋建筑、水坝设计等方面的研究和生产中。

振动信号处理的基本原理是在测试体上加一激振力,做为输入信号。

在测量点上监测输出信号。

输出信号与输入信号之比称为由测试体所构成的系统的传递函数(或称转移函数)。

根据得到的传递函数进行所谓模态参数识别,从而计算出系统的模态刚度、模态阻尼等主要参数。

这样就建立起系统的数学模型。

进而可以做出结构的动态优化设计。

这些工作均可利用数字处理器来进行。

这种分析和处理方法一般称为模态分析。

实质上,它就是信号处理在自动控制工程中所采用的一种特殊方法。

● 4.5地球物理信号处理为了勘探地下深处所储藏的石油和天然气以及其他矿藏,通常采用地震勘探方法来探测地层结构和岩性。

这种方法的基本原理是在一选定的地点施加人为的激震,如用爆炸方法产生一振动波向地下传播,遇到地层分界面即产生反射波,在距离振源一定远的地方放置一列感受器,接收到达地面的反射波。

从反射波的延迟时间和强度来判断地层的深度和结构。

感受器所接收到的地震记录是比较复杂的,需要处理才能进行地质解释。

处理的方法很多,有反褶积法,同态滤波法等,这是一个尚在努力研究的问题。

● 4.6生物医学信号处理信号处理在生物医学方面主要是用来辅助生物医学基础理论的研究和用于诊断检查和监护。

例如,用于细胞学、脑神经学、心血管学、遗传学等方面的基础理论研究。

人的脑神经系统由约 100亿个神经细胞所组成,是一个十分复杂而庞大的信息处理系统。

在这个处理系统中,信息的传输与处理是并列进行的,并具有特殊的功能,即使系统的某一部分发生障碍,其他部分仍能工作,这是计算机所做不到的。

因此,关于人脑的信息处理模型的研究就成为基础理论研究的重要课题。

此外,神经细胞模型的研究,染色体功能的研究等等,都可借助于信号处理的原理和技术来进行。

信号处理用于诊断检查较为成功的实例,有脑电或心电的自动分析系统、断层成像技术等。

断层成像技术是诊断学领域中的重大发明。

X射线断层的基本原理是X射线穿过被观测物体后构成物体的二维投影。

接收器接收后,再经过恢复或重建,即可在一系列的不同方位计算出二维投影,经过运算处理即取得实体的断层信息,从而大屏幕上得到断层造像。

信号处理在生物医学方面的应用正处于迅速发展阶段。

数字信号处理在其他方面还有多种用途,如雷达信号处理、地学信号处理等,它们虽各有其特殊要求,但所利用的基本技术大致相同。

在这些方面,数字信号处理技术起着主要的作用。

● 5 发展趋势5.1 数字信号处理和微处理器的融合:DSP嵌入式系统是将DSP系统嵌入到应用电子系统中的一种通用系统。

这种系统既具有DSP器件在数据处理方面的优势,又具有应用目标所需要的技术特征。

在许多嵌入式应用领域,既需要在数据处理方面具有独特优势的DSP,也需要在智能控制方面技高一筹的微处理器(MCU)。

因此,将DSP与MCU融合在一起的双核平台,将成为DSP技术发展的一种新潮流。

●● 5.2多媒体通信:多媒体通信包括媒体的压缩,媒体的综合(即从文本到语言以及自然会话的表情丰富的面孔,还有虚拟现实应用场景的综合),媒体的识别(涉及到音频和视频目标的识别),消息的转换和自然查询(例如,电子信函或传真向语音的转换,信息过滤,可变尺度的数据库与关系数据库各种通信网的综合)。

● 5.3 数字信号处理FPGA的融合:FPGA是现场编程门阵列器件。

它和DSP集成在一块芯片上,可实现宽带信号处理,大大提高信号处理速度。

据报道,Xilinx 公司的Virtex-II FPGA对快速傅立叶变换(FFT)的处理可提高30倍以上。

相关主题