当前位置:文档之家› 无线传感器网络flooding路由协议的MATLAB仿真

无线传感器网络flooding路由协议的MATLAB仿真

摘要

无线传感器网络是计算机科学技术的一个新的研究领域,是传感器技术、嵌入式计算技术、分布式信息处理技术和无线通信技术相结合的产物。与传统网络相比,无线传感器网络具有造价低、功耗低、布局灵活性强、监测精度高等特点,因此在军事、医疗、家用等多个领域均有广阔的应用市场。

本文重点研究基于无线传感器网络的泛洪式路由协议,无线传感器网络节点数量庞大、单个节点资源有限,其路由协议设计的首要目标是提高能量有效性,延长网络寿命。本文总结了WSN的概念、结构、特点,分析了WSN的关键性技术问题及网络协议;研究了WSN的网络协议体系和路由协议的分类,分析比较了目前国内外学者提出的几种有代表性的路由协议及其性能优缺点;选择了flooding路由协议为研究重点,分析了该路由算法的具体实现,针对传感器节点能量及传输范围有限等特点,提出了一种基于延迟的自适应泛洪路由算法,首先通过源节点在网内用较小的路由请求报文和路由回复报文来建立路由,路由建立的过程中自适应地确定等待时间以使更优的路由请求报文得到转发,然后源节点再沿着建立好的路径转发较大的数据报文。并采用MATLAB网络仿真工具对该路由协议进行了整体仿真,并对其数据进行了分析。仿真实验表明新算法较Flooding节能,能较好的克服Flooding算法中报文冗余度高、能耗大等不足。

关键词:无线传感器网络;flooding路由协议;MATLAB仿真

ABSTRACT

Wireless sensor networks are a new research field of computer science and technology. They are the integration of sensor techniques, nested computation techniques, distributed computation techniques and wireless communication techniques. Comparing with traditional networks, the wireless sensor networks features with low cost, low power loss, flexible layout and high monitor precision, therefore the sensor networks can be used for various application are as such as military, chemical, home.

This article focus on wireless sensor networks based on the Pan Hung-routing protocol, wireless sensor network nodes large number of individual nodes with limited resources, the routing protocol designed first and foremost objective is to improve energy efficiency and extend the network lifetime. This paper summarizes the WSN the concept, structure and characteristics of the WSN the key technical problems and network protocols; study of the WSN system and network routing protocol agreement the classification, analysis and comparison of the current domestic and foreign scholars have proposed several representatives The routing of the agreement and its performance advantages and disadvantages; chosen the flooding focus on routing protocols, analysis of the routing algorithm to achieve the specific, the sensor nodes the limited scope of energy and transmission characteristics, a delay based on the Adaptive Flood routing algorithm, first of all through the nodes in the network source in the smaller routing, and routing the request to restore the text to create a routing, routing the process of establishing adaptive to determine the waiting time to make better Routing the request was transmitted by text, and then another source nodes along the path forward the establishment of good data on the larger text. MATLAB and use the network simulation tool for the overall routing protocol simulation, and the data were analyzed. The simulation shows that the new algorithm than Flooding energy-saving, can better overcome Flooding algorithm message redundancy and high energy consumption, such as the insufficient.

Keywords:WSN;flooding routing protocols;MATLAB Simulation

目录

1 绪论 (1)

1.1 课题背景 (1)

1.2 国内外技术研究现状 (2)

1.3 课题研究的目的和意义 (3)

2 WSN综述 (4)

2.1 WSN的概念 (4)

2.2 WSN的结构 (4)

2.2.1 节点结构 (4)

2.2.2 网络体系结构 (5)

2.3 WSN协议栈 (6)

2.4 WSN的拓扑结构 (7)

2.5 WSN的特点 (10)

2.6 WSN的关键性技术问题 (11)

2.6.1 功耗问题 (12)

2.6.2 节能策略 (12)

2.6.3 通信问题 (14)

2.6.4 网络安全问题 (15)

2.6.5 定位问题 (15)

2.6.6 数据管理 (15)

2.6.7 服务质量 (16)

2.6.8 嵌入式操作系统 (16)

3.WSN路由协议算法分析 (17)

3.1 WSN路由协议的分类方法 (17)

3.2 几种典型路由协议的分析 (18)

3.2.1 平面路由协议 (18)

3.2.2 分层路由协议 (22)

4 Flooding路由协议的分析与研究 (27)

4.1 泛洪算法模型 (27)

4.2 算法流程图 (28)

4.3 基于延迟的自适应洪泛路由算法 (29)

4.3.1 算法中用到的报文和数据 (29)

4.3.2 SFD算法描述 (30)

4.3.3 性能比较尺度 (31)

4.3.4 理论分析 (32)

5 Flooding路由协议的MATLAB仿真 (35)

5.1 MATLAB仿真平台介绍 (35)

5.2 算法仿真实验参数 (38)

5.3 实验结果 (39)

6 结论 (42)

致谢 (43)

参考文献 (44)

附录A:英文原文 (45)

附录B:中文翻译 (51)

附录C:程序代码 (55)

1 绪论

1.1 课题背景

无线传感器网络是新兴的下一代传感器网络,最早的代表性论述出现在1999年,题为“传感器走向无线时代”。随后在美国的移动计算和网络国际会议上,提出了WSN 下一个世纪面临的发展机遇。2003年,美国《技术评论》杂志在论述未来新兴十大技术时,WSN名列第一;同年,美国Business week预测的未来四大新技术:效用计算、传感器网络、塑料电子学和仿生人体器官,QSN也列入其中。2004年((IEEE spectrum》杂志发表一期专集《传感器的国度》,论述了WSN的发展和可能的广泛应用。可以预计,WSN的发展和广泛应用,将对人们的社会生活和产业变革带来极大的影响和产生巨大的推动。有专家预计,WSN的广泛应用是一种必然趋势,它的出现将会给人类社会带来极大的变革。传感器网络的发展主要经历了4代:

(1)第一代:上世纪70年代,就出现了具有简单模拟信号传输功能的传统传感器所组成的点对点输出的测控系统网络。该网络具有简单信息获取能力,只是初步实现了信息的单向传递,其缺点是布线复杂、抗干扰性差。

(2)第二代:随着相关学科的不断发展和进步,传感器网络具有了获取多种信息的综合处理能力,并通过采用串/并接口与传感控制器的相联,组成了有信息综合和处理能力的传感器网络。

(3)第三代:20世纪90年代后期,出现了基于现场总线技术的智能传感器网络。现场

总线是连接智能化现场设备和控制室的全数字、开放式的双向通信网络智能传感器的通信技术进入局域网阶段,其局部测控网络通过网关和路由器可以实现与Intimae 灯Intranet连接。

(4)第四代:大量多功能传感器被运用,并采用无线通信机制,因此也称为。WSN,正处于研究和开发阶段。

WSN是一种无基础设施的网络,由一定数目的传感器节点构成,它综合了

传感器技术、嵌入式计算技术、分布式信息处理技术和无线通信技术,能协作地

实时监测、感知和采集节点部署区域的各种环境或监测对象的信息(如光强、温

度、湿度、噪音和有害气体浓度等物理现象),并对这些数据进行处理,获得详

尽而准确的信息,通过无线网络最终发送给观察者。在环境监测、医疗护理、抢

险救灾、智能家居、工业生产控制以及商业等领域具有广阔的应用前景。

1.2 国内外技术研究现状

目前,国内外WSN研究主要集中于网络协议、能量、定位、可靠性、网络架构以及数据处理等问题,网络协议的研究是其中的热点之一。针对无线自主网络的特点,经过多年的研究,国内外的研究人员相继提出了许多专门应用于无线自主网络的路由协议。目前提出的各种路由协议基本上可以按照三种思路进行分类。

(1)按照获取路由信息的时机分类,可分为主动路由协议和按需路由协议。主动路由有DSDV、WRP、STARA;按需路由协议主要有DSR、AODV。

(2)按照网络的层次分类,可分为平面结构路由和层次结构路由。平面路由协议主要有flooding、SPIN、DD、HREEMR、SAR;层次结构路由主要有LEACH、PEGASIS 等。

(3)按照协议的功能分类,可分为支持地理定位辅助路由和不支持地理定位辅助路由;支持服务质量QoS的路由协议和不支持QoS的路由协议;支持组播通信的路由协议和不支持组播通信的路由协议等。地理定位辅助协议主要有MECN和SMECN。

无线传感器网络的研究起始于20世纪90年代末期,由于具有巨大的应用价值,它己经引起了世界许多国家的军事界、工业界和学术界的极大关注。从2000年起,国际上开始出现一些有关传感器网络研究的报道,美国自然科学基金委员会2003年制定了传感器网络研究计划,支持相关基础理论的研究。在美国自然科学基金委员会的推动下,美国的加州大学伯克利分校、麻省理工学院、康奈尔大学、加州大学洛杉矶分校等学校开始了传感器网络的基础理论和关键技术的研究。美国国防部和各军事部门都对传感器网络高度重视,把传感器网络作为一个重要研究领域,设立了一系列的军事传感器网络研究项目。美国英特尔公司、微软公司等信息业巨头也开始了传感器网络方面的研究工作。日本、德国、英国、意大利等科技发达国家也对无线传感器网络表现出了极大的兴趣,纷纷展开了该领域的研究工作。

我国在WSN方面的研究工作刚刚开始,清华大学、电子科技大学、哈尔滨工业大学等单位已经进行了该领域的研究工作,但目前主要集中在介绍国外的研究进展,提出新的研究问题,尚未见有新的协议提出。由于WSN是一门新兴技术,IEEE尚未成立WSN的标准制定小组,美国也是在2000年才开始出现一些有关WSN研究结果的报道,

所以国内与国际水平的差距并不大,电子科技大学计算机学院正在开展WSN路由协议的设计和仿真工作,力争在5年内达到国际水平。但WSN尚未达到完全实用阶段,大部分工作仍处在仿真和实验阶段,仿真规模在数百至数千个节点,实验规模在几十个节点左右。

1.3 课题研究的目的和意义

如前所述,WSN有着广泛而有价值的应用领域,比如水工建筑物安全监测,大型工程建筑物的运行安全,结合现代监测理论及WSN技术,布置节点实现无人值守,为设计施工及时反馈信息,对减轻观测的劳动强度,提高安全监控的技术水平,具有重大的社会经济效益和应用价值。而在个人通信和接入网等方面的应用则具有良好的商业前景。因此,对WSN网络技术的研究既有重要的社会意义又蕴含着潜在的经济价值。因此它已经引起了世界工业界和学术界的极大关注,开展这项对人类未来生活影响深远的前沿科技的研究,对整个国家的社会、经济将有重大的战略意义。而从网络层模型的角度分析,每一层都有需要结合WSN的特点进行细致研究的问题,己有的研究主要集中在网络层和链路层。

网络数据传输离不开路由协议,路由协议是其组网的基础。路由技术是WSN通信层的核心技术。路由选择问题是WSN网络构建时所要着重考虑的一个问题,从路由的角度来看,WSN有其自身的特点,使它既不同于传统网络,又不同于无线自组网Ad hoc 网络。传统的无线Ad hoc网络路由协议不适合用于WSN,我们必须设计全新的、适合于WSN特点的路由协议。

路由协议作为影响网络性能的一个重要因素,是确保WSN网络正常运行的关键。虽然己提出了很多的协议,但是到底那一种是最合适的还没有一个定论。因此研究这些路由协议,比较分析哪一种路由协议是相对合适的显得尤为重要,也是此论文的意义所在。本课题重点研究基于无线传感器网络的泛洪式路由协议,无限传感器网络节点数量庞大、单个节点资源有限,其路由协议设计的首要目标是提高能量有效性,延长网络寿命。本文总结了WSN的概念、结构、特点,分析了WSN的关键性技术问题及网络协议;研究了WSN的网络协议体系和路由协议的分类,分析比较了目前国内外学者提出的集中有代表性的路由协议及其性能优缺点;选择了flooding路由协议为研究重点,分析了该路由算法的具体实现,并采用MATLAB网络仿真工具对flooding路由协议进行了整体仿真,并对其数据进行了分析。

2 WSN综述

无线传感器网络是传感器技术、网络通信和计算机技术的集大成者,是一种全新的信息获取和处理技术。美国《技术评论》杂志在论述未来新兴十大技术时, 更是将无线传感器网络名列第一;美国Business Week 预测的未来四大新技术:效用计算、传感器网络、塑料电子学和仿生人体器官,无线传感器网络也列入其中。有专家预计,无线传感器网络的广泛应用是一种必然趋势,它的出现将会给人类社会带来极大的变革。

2.1 WSN的概念

无线传感器网络是由一个个具有数据采集、计算和通信能力的传感器节点,通过自组织网络形成的一个动态、自适应的分布式计算平台。每个传感器都是典型的嵌入式系统,具有存储容量小、运算能力差、功耗低、易失效的特点。

2.2 WSN的结构

2.2.1 节点结构

在不同应用中,传感器节点的结构不尽相同,但一般都由传感器模块、处理器模块、无线通信模块和能量供应模块四部分组成,如图2.1所示。传感器模块负责监测区域内信息的采集和数据转换,传感器的类型是由被监测物理信号的形式决定的,如用于温度监测的铂电阻传感器,用于压力传感的电容式传感器等;处理器模块负责控制整个传感器节点的操作,存储和处理本身采集的数据以及其他节点发送来的数据;无线通信模块负责与其他传感器节点进行无线通信,交换控制信息和收发采集数据;能量供应模块为传感器节点提供运行所需的能量,通常采用微型电池,不过已有公司探索从周围环境取得能量并将其转换成微瓦电能的方法。

图2.1 传感器网络节点结构

2.2.2 网络体系结构

在传感器网络中,节点任意散落在被监测区域内,这一过程是通过飞行器撒播、人工埋置和火箭弹射等方式完成的。节点以自组织形式构成网络,通过多跳中继方式将监测数据传到sink节点,最终借助长距离或临时建立的sink链路将整个区域内的数据传送到远程中心进行集中处理。卫星链路可用作sink链路,借助游弋在监测区上空的无人飞机回收sink节点上的数据也是一种方式,UC Berkeley在进行UA V(unmanned aerial vehicle)项目的外场测试时便采用了这种方式。如果网络规模太大,可以采用聚类分层的管理模式,图2.2给出了传感器网络体系结构一般形式的描述。

图2.2 传感器网络的体系结构

2.3 WSN协议栈

无线传感器网络协议栈包括物理层、数据链路层、网络层、传输联网协议栈的五层协议相对应,如图2.3所示。另外,协议栈还包括动管理平台和任务管理平台。这些管理平台使得传感器节点能够按照同工作,在节点移动的传感器网络中转发数据,并支持多任务和资源平台的功能如下:

(1)物理层提供简单但健壮的信号调制和无线收发技术;

(2)数据链路层负责数据成帧,帧检测、媒体访问和差错控制;

(3)网络层主要负责路由生成与路由选择;

(4)传输层负责数据流的传输控制,是保证通信服务质量的重要;

(5)应用层包括一系列基于监测任务的应用层软件;

(6)能量管理平台管理传感器节点如何使用能源,在各个协议层量;

(7)移动管理平台检测并注册传感器节点的移动,维护到汇聚节感器节点能够动态跟踪其邻居的位置;

(8)任务管理平台在一个给定的区域内平衡和调度检测任务。

图2.3 无线传感器网络协议栈

2.4 WSN的拓扑结构

在无线传感器网络中,传感器节点是体积微小的嵌入式设备,采用能量有限的电池供电,它的计算能力和通信能力十分有限,所以除了要设计能量高效的MAC协议、路由协议以及应用层协议之外,还要设计优化的网络拓扑控制机制。对于自组织的无线传感器网络而言,网络拓扑控制对网络性能影响很大。良好的拓扑结构能够提高路由协议和MAC协议的效率,为数据融合、时间同步和目标定位等很多方面提供基础,有利于延长整个网络的生存时间。所以,拓扑控制是传感器网络中的一个基本问题。

在无线传感器网络中,网络的拓扑结构控制有着十分重要的意义,主要表现在以下几个方面:

(1)影响整个网络的生命周期。基于无线传感器网络有限的能量,节能是网络设计主要考虑的问题之一,拓扑控制的一个重要目标就是在保证网络连通性和覆盖率的情况下,尽量合理高效地使用网络能量,延长整个网络的生存时间。

(2)减小节点间通信干扰,提高网络通信效率。无线传感器网络中节点通常密集分布,如果每个节点都以大功率进行通信,会加剧节点之间的干扰,降低通信效率,并造成节点能量的浪费。另一方面,如果选择太小的发射功率,会影响网络的连通性。

(3)为路由协议提供基础。在无线传感器网络中,只有活动的节点才能进行数据转发,而拓扑结构控制可以确定由哪些节点作为转发节点,同时确定节点之间的邻居关系。

(4)影响数据融合。无线传感器网络中的数据融合指传感器节点将采集的数据发送给中

心节点,中心节点进行数据融合,并把融合后的数据发送给汇聚节点。而中心节点的选择是拓扑结构控制的一个重要内容。

(5)弥补节点失效的影响。传感器节点可能部署在恶劣的环境中,在军事应用中甚至部署在敌方区域中,所以很容易受到破坏而失效。这就要求网络拓扑结构具有鲁棒性以适应这种情况。

无线传感器网络特定的应用环境及其固有的特征,对传感器网络拓扑结构的设计提出了新的要求。在无线传感器网络中,节点需要完全以自组织的形式构成自治型网络,并且能够工作在无人值守的恶劣环境当中。到目前为止,无线传感器网络拓扑结构的研究主要集中在两个方向,即平面型拓扑结构和层次型拓扑结构。

(1)平面型拓扑结构

平面型拓扑结构,所有节点的地位平等、作用相同,既采集数据又进行数据通信的中转,网络中不存在集中式控制中心。为了有效地节省能量,远距离节点之间以多跳通信方式,如图2.4所示。平面结构网络比较简单,无需任何的结构维护过程,节点根据预定的路由协议自组织成无线网络。由于随机分布、高密度等特性,源节点和目的节点之间可能存在多条传输路径,如图2.4中节点A和E之间存在两条路径:A一>C一>D 一>E和A一>C一>F一>E,既可以使用多条路径实现负载分担,也可以为不同的数据传输需求选择适当的路径。平面结构网络中所有的传感器节点理论上是对等的,不存在瓶颈和单点故障,所以比较健壮,但是网络规模受限,动态扩展性差,难以维护。在平面结构中,源节点为了获得目的节点信息通常需要传输大量的查询消息,而且由于网络的动态性,如节点失效、增加等,维护这些动态变化的路由信息需要发送大量的控制消息。网络规模越大路由维护的开销就越大,当网络的规模增加到某个程度时,网络的所有带宽可能被路由协议消耗掉,所以平面式结构的网络扩展性较差。

图2.4 平面型拓扑结构

(2)层次型拓扑结构

层次型拓扑结构中,网络根据具体应用需求,如地理区域、能源、应用类型等,划分为簇(Cluster),每个簇由一个簇头节点和多个簇成员构成,多个簇头节点抽象成高

一级的网络,在高一级网络中可以继续分簇,形成更高一级网络,最终形成多层次组织结构的传感器网络,如图2.5所示。

层次型拓扑结构中,不同层次以自己的局部概念进行交互,聚集起来实现期望的全

局任务。分层组织结构中,簇内成员节点负责感知任务,以多跳方式将采集的信息发送到簇头节点。簇头节点作为簇类的中心节点,担负着与远程终端通讯、发布簇类管理信息、执行更高层次的数据融合和数据分析等使命。为了有效利用能源和延长网络的生命周期,簇头节点通常依据能量概率分布由网络节点轮流充当。这样可以使簇头节点的高能量消耗平均到网络节点上,同时也避免了固定簇头引起的网络的脆弱性和不稳定性,而且可以通过簇拆分来增加簇的个数或者簇聚合形成更高一级网络来提高整个网络的容量。但缺点是,为了维护层次化结构需要仔细设计簇头选择算法。而且簇间节点为了完成数据通信需要经过簇头转发,因此不一定能使用最佳路由,例如图2.5中的A、B节点,物理距离很接近,在平面结构中可以直接通信,但分簇后需要通过两个簇的簇头中继进行通信。

2.5 WSN的特点

(1)传感节点体积小,成本低,计算能力有限

无线传感器网络是在MEMS技术、数字电路技术基础上发展起来的,传感节点各部分集成度很高,因此具有体积小的优点,当然从应用角度讲,减小节点尺寸也是必须考虑的设计要素。传感网络是由大量的传感节点组成的,单个节点的成本直接影响到网络的总体成本,如果总体成本比使用传统传感器的成本高,势必会影响无线传感网络的竞争力。由于体积、成本以及能量的限制,嵌入式处理器和存储器的能力和容量有限,因此传感器的计算能力十分有限。

(2)传感节点数量大、易失效,具有自适应性

根据应用的不同,传感器节点的数量可能达到几百万个甚至更多。此外,传感器网络工作在比较恶劣的环境中,经常有新节点加入或已有节点失效,网络的拓扑结构变化很快,而且网络一旦形成,人很少干预其运行。因此,传感器网络的硬件必须具有高强壮性和容错性,相应的通信协议必须具有可重构和自适应性。

(3)通信半径小,带宽很低

无线传感器网络是利用多跳来实现低功耗下的数据传输,因此其设计的通信覆盖范围只有几十米。和传统无线网络不同,传感器网络中传输的数据大部分是经过节点处理过的数据,因此流量较小。根据目前观察到的现象特性来看,传感数据所需的带宽将会很低(l~100kbi灯s)。

(4)电源能量是网络寿命的关键

无线传感器网络中通常运行在人无法接近的恶劣甚至危险的远程环境中,能源无法替代,只能选择钮扣式电池供电,电源能量极其有限,网络中的传感器由于电源能量的原因经常失效或废弃,因此电源效率是设计考虑的关键因素。

(5)以数据为中心的网络

对于观察者来说,传感器网络的核心是感知数据,而不是网络硬件。比如在智能家居应用中人们可能希望知道“现在客厅的温度室多少”,而不会关心“2号节点感测到的温度是多少”。以数据为中心的特点要求传感器网络的设计必须以对感知数据的管理和处理为中心,把数据库技术和网络技术紧密结合,从逻辑概念和软、硬件技术两个方面实现一个高性能的以数据为中心的网络系统,使用户如同使用通常的数据库管理系统和数据处理系统一样自如地在传感器网络上对感知数据进行管理和处理。

2.6 WSN的关键性技术问题

无线传感器网络与传统的无线网络(如WLAN和蜂窝移动电话网络)有着不同的设计目标,后者在高度移动的环境中通过优化路由和资源管理策略最大化带宽的利用率,同时为用户提供一定的服务质量保证。在无线传感器网络中,除了少数节点需要移动以外,大部分节点都是静止的。因为它们通常运行在人无法接近的恶劣甚至危险的远程环境中,能源无法替代,设计有效的策略延长网络的生命周期成为无线传感器网络的核心问题。

当然,从理论上讲,太阳能电池能持久地补给能源,但工程实践中生产这种微型化的电池还有相当的难度。在无线传感器网络的研究初期,人们一度认为成熟的Internet技术加上Ad-hoc路由机制对传感器网络的设计是足够充分的,但深入的研究表明:传感器网络有着与传统网络明显不同的技术要求。前者以数据为中心,后者以传输数据为目的.为了适应广泛的应用程序,传统网络的设计遵循着“端到端”的边缘论思想,强调将一切与功能相关的处理都放在网络的端系统上,中间节点仅仅负责数据分组的转发,对于传感器网络,这未必是一种合理的选择。一些为自组织的Ad-hoc网络设计的协议和算法未必适合传感器网络的特点和应用的要求。节点标识(如地址等)的作用在传感器网络中就显得不是十分重要,因为应用程序不怎么关心单节点上的信息;中间节点上与具体应用相关的数据处理、融合和缓存也显得很有必要。在密集性的传感器网络中,相邻节点间的距离非常短,低功耗的多跳通信模式节省功耗,同时增加了通信的隐蔽性,也避免了长距离的无线通信易受外界噪声干扰的影响。这些独特的要求和制约因素为传感器网络的研究提出了新

的技术问题。

2.6.1 功耗问题

作为一种微电子设备,无线传感器节点只能配置电池,电池电量一般小于0.SAh ,电压为1.2v-3.3V 。在一些具体应用中,电池更换是不现实的。

所以,节点生命期严重依赖于电池供电的持续时间。在WSN 中,每个节点都起着数据采集器和路由器的双重作用。一些节点的故障会引起拓扑的明显变化,可能要求重建路由或重组织网络。所以,能量保护和能量管理至关重要。传感节点的主要功能是感知、处理和数据传输,其能耗也主要分布在这三个方面。感知能耗与具体应用环境中携带的不同传感单元有关。通信能耗在节点能耗中比例最大,需要考虑启动功耗、接收功耗和发送功耗,无线电收发器能耗公式如下:

()[]()[]ST On R R On OUT st On T T R R P N T P T T P N Pc ++++= (2.1)

其中,Pc 为无线通信功耗;P T 和P R 分别为无线发送和接收器件的功耗;P ouT 为无线发送器的输出功率;T on 、R on 伽分别为每个单位时间内无线发送器和无线接收器的打开的时间;T st 、R ST 分别为发送和接收的启动时间;N T 、N R 为单位时间内接收和发送的次数,依赖于任务和采用的媒介访问控制(MAC)策略;T on 也可写成L/R ,L 为数据包大小,R 为数据传输速率。数据处理功耗比通信功耗要小得多,例如:假定瑞利衰落且能量与距离的4次方成正比损耗,实验表明,无线传输1K 比特的数据100米的能量可以让l00MIPS/W 的处理器处理300万条指令。因此尽可能地进行本地数据处理而减少数据的无线传输是降低WSN 能耗的有效办法之一。

针对数据采集、接收、发送和计算这四者的能耗问题,curt Schurgers 等人进行了实验。实验结果表明,发送数据(Tx)的能耗略大于接收数据(Rx),二者远大于数据处理(计算)和数据采集的能耗。

2.6.2 节能策略

由于无线通信是WSN 能耗的主要部分,因此对无线收发系统的能耗管理非常重要,可以采取以下措施减少通信模块的能量损耗。

(l)减少通信流量

减少通信流量的方法有:a.本地计算和数据融合b.减少冲突,增加错误检测和校正机制d.减少控制包的开销和包头长度。

(2)增加睡眠时间

无线通信模块有发送、接收、空闲和睡眠4种状态。无线通信模块在空闲状态一直监听无线信道的使用情况,检查是否有数据发送给自己,而在睡眠状态则关闭通信模块。从实验中可以看到:无线通信模块在发送状态的能量消耗最大,而在空闲状态和接收状态的能量消耗接近,略少于发送状态的能量消耗,在睡眠状态的能量消耗最少。因此不需要通信时,尽快进入睡眠状态是WSN 协议设计重点考虑的问题。

(3)采用多跳短距离无线通信方式

无线通信消耗能量E 与通信距离d 的关系为E=kd n 。其中,参数n 满足关系2≤n<6,考虑诸多因素,一般取n 为3。随着通信距离的增加,能耗将急剧增加。因此,在满足通信速率的前提下,应该尽量减少单跳通信距离。一般传感器节点的通信半径在10Om 以内较为合适。

(4)动态功率管理(dynamic power management ,简称DPM)

DPM 技术的核心问题是状态转换策略,由于状态转换需要消耗一定的能量并且带有时延,如果状态转换策略不合适,不仅无法节能,反而会导致能耗的增加,还会影响实时性能。DPM 的状态转换可如图2.6所示,假定状态转换分别发生在t 1和t 2时刻,其中t 2=t i +t 1,在t l 时刻节点K 想要从Sm 状态进入休眠状态Sn ,在t 2时刻需要从Sn 返回到Sm 状态,每个状态都有对应的能耗Pm 和Pn ,状态转换分别需要时间t dk 和t uk 则能量节约如公式所示:

()()()dk i n uk dk n m i m save t t P t t P P t P E -?-+?+-?=2/ (2.2)

图2.6 状态转换和能量的关系

(5)动态电压调度(dynamic voltage scheduling,简称DVS)

DVS的主要原理是基于负载状态动态调节供电电压来减小系统功耗,并被应用到PDA之类的个人移动设备上。可将其应用到WSN中,如图2.7所示的功率控制原理图。节点上的嵌入式操作系统负责调度来自不同任务队列的请求接受服务,并实时监测处理器的利用率和任务队列的长度,负载观测器依据这两个参数的序列值计算负载的标称值。,直流/直流变换器参照该值输出幅值为A的电压,支持处理器的正常工作。这构成了一个典型的闭环反馈系统。控制理论中成熟的方法可以为该系统中各个模块的设计提供有力的支持。传感器节点大部分时间计算负载较低,在低负载时调低微处理器的电压可以有效节约能量。

图2.7:DVS功率控制原理图

2.6.3 通信问题

WSN内正常通信联系中,信号可能被一些障碍物或其它电子信号干扰而受到影响,如何安全有效的进行通信是个有待研究的问题。WSN需要具有能对信道衰落不敏感、发射信号功率谱密度低、低截获低功耗短距离的无线通信技术。IEEE802.15.4标准是针对低速无线个人域网络的无线通信标准,由于它的网络特征和WSN存在很多相似之处,故很多研究机构将它作为WSN的无线通信平台。超宽带技术(UWB)是一种极具潜力的无线通信技术。超宽带技术具有系统复杂度低、能提供精确至数厘米的定位精度

等优点,非常适合应用于WSN。

2.6.4 网络安全问题

安全是系统可用的前提,WSN是网络家庭的新成员,像其他网络一样需要考虑安全问题。WSN的安全问题主要以下几个方面:

(1)传统无线电磁干扰;

(2)对路由机制进行攻击;

(3)对能量的攻击,侵入节点导致网络的某些节点和网络段互发大量的垃圾数据,使WSN能量迅速耗尽,网络分立,形成监测黑洞,无法完成正常的监测工作;

针对以上各种不同的攻击方式,一般可采用扩频通信、sensor接入认证/鉴权、数据水银和数据加密技术以提高网络的安全性。基本思想有两种:一种是从维护路由安全的角度出发,寻找尽可能安全的路由以保证网络的安全。如果路由协议被破坏导致传送的消息被篡改,那么对于应用层上的数据包来说没有任何的安全性可言。另一种是把着重点放在安全协议方面。

2.6.5 定位问题

WSN的定位机制与算法包括两部分:节点自身定位和外部目标定位,前者是后者的基础。获得节点位置的一个直接方法就是使用全球定位系统GPS,但该定位装置价格昂贵而且在有遮挡的情况下使用效果不佳;对于精度不高的还可以采用LPS(Local Position System)。为每个节点都配备GPS定位装置是一个高成本的设计思想,是一个不现实的想法,因此一般采用GPS+绝对定位或相对定位来实现。

2.6.6 数据管理

从数据存储的角度来看,无线传感器网络可被视为一种分布式数据库。以数据库的方法在无线传感器网络中进行数据管理,可以将存储在网络中的数据的逻辑视图与网络中的实现进行分离,使得无线传感器网络的用户只需要关心数据查询的逻辑结构,无需关心实现细节。虽然对节点感知到的数据进行抽象在一定程度上影响执行效率,但可以显著增强传感器网络的易用性。美国加州大学伯克利分校的Tiny DB系统和Comell大学的Cougar系统是目前具有代表性的传感器网络数据管理系统。

传感器网络的数据管理与传统的分布式数据库有很大的差别。由于传感器节点能量

受限且容易失效,数据管理系统必须在尽量减少能量消耗的同时提供有效的数据服务。同时,传感器网络中节点数量庞大,且传感器节点产生的是无限的数据流,无法通过传统的分布式数据库的数据管理技术进行分析处理。此外,对传感器网络数据的查询经常是连续的查询或随机抽样的查询,这也使得传统分布式数据库的数据管理技术不适用于传感器网络。

2.6.7 服务质量

在某些应用中,数据应是刚感受到的一段时间内,否则数据将无用的。因此,范围潜伏期为数据传送是另一个条件,时间约束的应用。然而,在许多应用中,节约能源是直接关系到网络的一生,被认为是相对来得重要数据的质量发送。当能量耗尽之时,该网络可能必须减少质量,以减少节点能量损耗和从此延长整个网络寿命。因此,路由协议能量是必须有这个必备的条件。

2.6.8 嵌入式操作系统

传感器节点是一个微型的嵌入式系统,携带非常有限的硬件资源,需要操作系统能够节能高效地使用其有限地内存、处理器和通信模块,且能够对各种特定应用提供最大的支持。在面向无线传感器网络的操作系统的支持下,多个应用可以并发地使用系统的有限资源。传感器节点有两个突出的特点。一个特点是并发性密集,即可能存在多个需要同时执行的逻辑控制,这需要操作系统有效地满足这种发生频繁、并发程度高、执行过程比较短的逻辑控制流程;另一个特点是传感器节点模块化程度很高,要求操作系统能够让应用程序方便地对硬件进行控制。上述这些特点对设计面向无线传感器网络的操作系统提出了新的挑战。

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

无线传感器网络各类路由协议仿真

实 验 报 告 课程无线传感网络各类路由协议仿真 1.实验目的 网络数据传输离不开路由协议,路由协议是其组网的基础,路由协议是无线

传感器网络研究的重点之一,其主要的设计目标是降低节点能量消耗,延长网络的生命周期。本次实验将仿真各类无线传感器网络路由协议。 2.实验要求 争取考虑全面,考虑到各因素对各类协议的影响,以提高无线传感网络的性能。 3.设计思想 (1)Flooding 泛洪是一种传统的路由技术,不要求维护网络的拓扑结构,并进行路由计算, 接收到消息的节点以广播形式转发分组。对于自组织的传感器网络,泛洪路由是 一种较直接的实现方法,但消息的“内爆”(implosion)和“重叠”(overlap)是其固有的 缺陷。为了克服这些缺陷,S.hedetniemi等人提出了Gossiping策略,节点随机选 取一个相邻节点转发它接收到的分组,而不是采用广播形式。这种方法避免了消 息的“内爆”现象,但有可能增加端到端的传输延时。 Flooding路由协议中的内爆和重叠问题 (2)SPIN (sensor protocol for information via negotiation) SPIN是以数据为中心的自适应路由协议,通过协商机制来解决泛洪算法中 的“内爆”和“重叠”问题。传感器节点仅广播采集数据的描述信息,当有相应的请 求时,才有目的地发送数据信息。SPIN协议中有3种类型的消息,即ADV,REQ 和DATA。 ADV—用于新数据广播。当一个节点有数据可共享时,它以广播方式向外发送

DATA数据包中的元数据。 REQ—用于请求发送数据。当一个节点希望接收DATA数据包时,发送REQ数据包。 DATA—包含附上元数据头(meta一header)的实际数据包。 SPIN协议有4种不同的形式: ? SPIN-PP:采用点到点的通信模式,并假定两节点间的通信不受其他节点的干扰,分组不会丢失,功率没有任何限制。要发送数据的节点通过ADV向它的相邻节点广播消息,感兴趣的节点通过REQ发送请求,数据源向请求者发送数据。接收到数据的节点再向它的相邻节点广播ADV消息,如此重复,使所有节点都有机会接收到任何数据。 ? SPIN-EC:在SPIN-PP的基础上考虑了节点的功耗,只有能够顺利完成所有任务且能量不低于设定阈值的节点才可参与数据交换。 ? SPIN-BC:设计了广播信道,使所有在有效半径内的节点可以同时完成数据交换。为了防止产生重复的REQ请求,节点在听到ADV消息以后,设定一个随机定时器来控制REQ请求的发送,其他节点听到该请求,主动放弃请求权利。? SPIN-RL:它是对SPIN-BC的完善,主要考虑如何恢复无线链路引入的分组差错与丢失。记录ADV消息的相关状态,如果在确定时间间隔内接收不到请求数据,则发送重传请求,重传请求的次数有一定的限制。图3.2表明了SPIN协议的路由建立与数据传送。 SPIN协议的路由建立与数据传送 基于数据描述的协商机制和能量自适应机制的SP创协议能够很好地解决传统的Flooding协议所带来的信息爆炸、信息重复和资源浪费等问题。此外,由于协议中每个节点只需知道其单跳邻居节点的信息,拓扑改变呈现本地化特征。SP 州协议的缺点是数据广告机制不能保证数据的可靠传递,如果对数据感兴趣的节点远离源节点或者在源节点和目的节点中间的节点对数据不感兴趣,那么数据就不可能被传递到目的地。因此,对于入侵发现等需要在定期间隔内可靠传递数据

无线传感器网络路由协议

无线传感器网络的关键技术有路由协议、MAC协议、拓扑控制、定位技术等。路由协议: 数据包的传送需要通过多跳通信方式到达目的端,因此路由选择算法就是网络层设计的一个主要任务。路由协议主要负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能: 1、寻找源节点与目的节点间的优化路径。 2、将数据分组沿着优化路径正确转发。 无线传感器与传统的无线网络协议不同之处,它受到能量消耗的制约,并且只能获取到局部拓扑结构的信息,由于这两个原因,无线传感器的路由协议要能够在局部网络信息的基础上选择合适路径。传感器由于它很强的应用相关性,不同应用中的路由协议差别很大,没有通用的路由协议。无线路由器的路由协议应具备以下特点: (1)能量优先。需要考虑到节点的能量消耗以及网络能量均衡使用的问题。(2)基于局部拓扑信息。WSN为了节省通信能量,通常采用多跳的通信模式,因此节点如何在只能获取到局部拓扑信息与资源有限的情况下实现简单高效的路由机制,这就是WSN的一个基本问题。 (3)以数据为中心。传统路由协议通常以地址作为节点的标识与路由的依据,而WSN由于节点的随机分布,所关注的就是监测区域的感知数据,而不就是具体哪个节点获取的信息,要形成以数据为中心的消息转发路径。(4)应用相关。设计者需要针对每一个具体应用的需求,设计与之适应的特定路由机制。 现介绍几种常见的路由协议(平面路由协议、网络分层路由协议、地理定位辅助路由协议): 一、平面路由协议 平面路由协议中,逻辑结构时平面结构,节点间地位平等,通过局部操作与反馈信息来生成路由。当汇聚点向某些区域发送查询并等待来自于这些区域内传感器所采集的相关数据,其中的数据不能采用全局统一的ID,而就是要采用基于属性的命名机制进行描述。平面路由的优点就是结构简单、鲁棒性(即路由机制的容错能力)较好,缺点就是缺乏对通信资源的优化管理,对网络动态变化的反应速度较慢。其中典型的平面路由协议有以下几种: 1、1、洪泛式路由(Flooding): 这就是一种传统的网络通信路由协议。这种算法不要求维护网络的拓扑结构与相关路由的计算,仅要求接受到信息的节点以广播形式转发数据包。例如:S节点要传送一段数据给D节点,它需要通过网络将副本传送给它每一个邻居节点,一直到传送到节点D为止或者为该数据所设定的生存期限为零为止。优点在于:实现简单;不需要为保持网络拓扑信息与实现复杂路由发现算法消耗计算资源;适用于鲁棒性较高的场合。但同时也有相应的缺点:一个节点可能得到一个数据的多个副本;存在部分重叠,如果相邻节点同时对某件事作出反应,则两个节点的邻居节点将收到两份数据副本;盲目使用资源,无法作出自适应的路由选择。 为克服Flooding算法这些固有的缺陷,S、Hedetniemi等人提出闲聊式(Gossiping)策略。这种算法采用随机性原则,即节点发送数据时不再采用广播形式,而就是随机选取一个相邻节点转发它接收到的数据副本(避免了消息爆炸的结果)。

项目三了解无线传感器协议栈

项目三了解无线传感器协议栈 项目三了解ZigBee无线传感器网络协议栈知识目标1.掌握zigbee无线传感器网络的协议栈和协议的区别等知识。 2.掌握Z-Stack协议栈的OSAL分配机制。 3.了解Z-Stack协议栈的OSAL运行机制。 4.掌握Z-Stack协议栈的OSAL常用函数。 项目三了解ZigBee无线传感器网络协议栈技能目标1.掌握 Z-Stack协议栈的运行机制。 2.掌握Z-Stack协议栈中OSAL的添加新任务的方法。 项目三了解ZigBee无线传感器网络协议栈在实际zigbee无线传感器网络工程的开发过程中首先借助TI提供的协议栈中例程SampleApp,接着根据需要完成的功能,查看支持Z-Stack协议栈的硬件电路图,再查阅数据手册(CC2530的数据手册、Z-Stack协议栈说明、Z-Stack协议栈API函数使用说明等)文件,然后再进行协议栈的修改。 最后,还需要烧录器下载到相应的硬件,实现zigbee无线传感器网络的组建和开发。 设计思路3.1.1协议与协议栈协议定义的是一系列的通信标准,通信双方需要共同按照这一标准进行正常的数据收发;议栈是协议的具体实现形式。 通俗的理解为代码实现的函数库,以便于开发人员调用。

3.1Z-Stack协议栈3.1.1协议与协议栈协议栈是指网络中各层协议的总和,一套协议的规范。 其形象地反映了一个网络中文件传输的过程由上层协议到底层协议,再由底层协议到上层协议。 使用最广泛的是因特网协议栈,由上到下的协议分别是应用层(Http、Tel、DNS、Email等),运输层(TCP、UDP),网络层(IP),链路层(WI-FI、以太网、令牌环、FDDI等)。 3.1Z-Stack协议栈3.1.1协议与协议栈3.1Z-Stack协议栈3.1.1协议与协议栈Zigbee协议栈开发的基本思路如下。 ①借助TI提供的协议栈中例程SampleApp进行二次开发,用户不需要深入研究复杂的zigbee协议栈,这样可以减轻开发者的工作量。 ②Zigbee无线传感器网络中数据采集,只需要用户在应用层加入传感器的读取函数和添加头文件即可实现。 ③如果考虑节能,可以根据数据采集周期(zigbee协议栈例程中已开发了定时程序)进行定时,定时时间到就唤醒zigbee终端节点,终端节点唤醒后,自动采集传感器数据,然后将数据发送给路由器或者直接发给协调器,即监测节点定时汇报监测数据。 ④协调器(网关)根据下发的控制命令,将控制信息转发到具体的节点,即控制节点等待控制命令下发。 3.1Z-Stack协议栈3.1.2使用Z-Stack协议栈传输SampleApp.c 中定义了发送函数static voidSampleApp_SendTheMessage(void)。 该函数通过调用AF_DataRequest来发送数据。

实验7 OSPF路由协议配置 实验报告

浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称:OSPF路由协议配置 专业班级:姓名:小组学号:2012014048实验日期:6.6

再测试。要求写出两台路由器上的ospf路由配置命令。

[RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf [RTC-ospf-1]import rip [RTC-ospf-1]quit

结合第五步得到的路由表分析出现表中结果的原因: RouteB 通过RIP学习到C和D 的路由情况,通过OSPF学习到A 的路由信息 实验个人总结 班级通信123班本人学号后三位__048__ 本人姓名_ 徐波_ 日期2014.6.06 本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。这些华为实验都让我受益匪浅。 实验个人总结 班级通信123班本人学号后三位__046__ 本人姓名_ 金振宁_ 日期2014.6.06 这两次实验都可以利用软件在寝室或者去其他的地方去做,并不拘泥于实验室,好好的利用华为的模拟机软件对我们来说都是非常有用的。 实验个人总结 班级通信123班本人学号后三位__044_ 本人姓名_ 陈哲日期2014.6.06

理解OSPF路由协议,OSPF协议具有如下特点: 适应范围:OSPF 支持各种规模的网络,最多可支持几百台路由器。 快速收敛:如果网络的拓扑结构发生变化,OSPF 立即发送更新报文,使这一变化在自治系统中同步。 无自环:由于OSPF 通过收集到的链路状态用最短路径树算法计算路由,故从算法本身保证了不会生成自环路由。 实验个人总结 班级通信123班本人学号后三位__050 本人姓名_ 赵权日期2014.6.06 通过本次实验学会了基本的在路由器上配置OSPF路由协议,组建一个简单的路由网络。想必以后的生活中有可能会用到。

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络的应用与影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的范围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素 applications of wireless sensor networks and influencing factors analysis liu peng (college of computer science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a comprehensive description of the development

无线传感器网络协议栈研究与设计-第3章

第3章 低功耗无线传感器网络协议栈整体设计 本章的目标是对低功耗环境测控网络协议栈进行整体设计。首先对环境测控系统进行需求分析明确其适用场景和网络设备类型;然后,根据需求分析确定协议栈的设计目标,并选择适合的网络拓扑结构和协议栈的分层架构。协议栈的网络层和MAC 层将作为本章的设计的重点。 3.1 网络需求分析 3.1.1 应用场景介绍 本课题来源于研究生校企合作项目,所设计的低功耗无线传感器协议栈主要应用于环境测控系统中。该系统长期无人值守,其温度、湿度等环境参数由连接无线节点的传感器实时采集并上传至汇聚节点,汇聚节点再通过有线的方式传输至面向用户的管理终端。多个子系统采集的数据最后由各自的管理终端传送至云端处理中心进行数据的保存,整个系统框图如图3.1所示。 云端处理中心 二级中继 汇聚节点 图3.1 环境测控系统框图 图中的环境测控无线网络是执行数据采集和设备控制的主体,也是协议栈发挥作用的区域。一个环境测控无线网络负责一个区域,区域之间有一定的距离,

因此无线网络之间不存在干扰,但无线网络的运行方式一致。该项目处于初期开发阶段,所以本文设计的协议栈只应用于单个环境测控无线网络中。 该课题所涉及的环境测控系统处于室内,人员进出频率低。网络中节点数不超过65个,包含一个汇聚节点。点对点通信的距离要求达到20米。传感器节点以10秒为周期采集并发送环境数据。考虑到室内可能会出现一些特殊设备、隔断等障碍影响通信距离,并使得部分节点处于屏蔽的位置,因此网络通过设置中继节点来扩展通信距离,经过中继后的通信距离要求60米及以上。由于成本等原因,课题设定数据包最多经过两级中继传递,每级中继最多4个,中继数量不超过8个。同时,系统中存在少量控制节点,控制节点连接室内的控温设备来调节室内温度。控制节点由工作人员从软件端下达命令进行开关,因此不具备周期性。该课题要求除汇聚节点、中继节点之外的所有节点能在1000mA/h电池的支持下工作一年以上。为保证数据采集的有效性和传输的可靠性,该课题要求多节点共享信道的丢包率在5%以内。此外,由于环境的特殊性,人员不能随时到场,还要求该环境测控网络中的节点具有安装简单、组网快速、配置容易的特点。以上需求总结如表3.1所示。 表3.1 环境测控系统需求指标 表3.1明确了该环境测控无线网络的要求。通过需求指标能使协议栈的设计更有约束性,设计方向也会更加明确。

(合同范本)路由协议与配置过程

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 (合同范本)路由协议与配置过程 甲方:___________________ 乙方:___________________ 日期:___________________

路由选择协议是路由器之间进行信息交流的语言,通过信息的交流建立网络的完整拓扑 结构,从而选择最优路径,并将该路径记录到路由表中。一旦路由表建立,路由器便可以通 过其输入接口接收数据包,确定其目的地址,然后根据路由表中的信息,将该数据包转送到相应的输出接口。 8.1 IP路由 。动态路由 由路由器通过运行路由协议而生成的到达目标网络的路径。 。静态路由 如果到达目标网络只有一条路径或我们只希望发送的数据包以同一路径传输时,就直接设置路由器的相应接口来指定一条到达目的地址的特定路径。这就是静态路由。静态路由的计量值为0或1,计量值越小则可靠性越高。可以通过提高计量值的方法将静态路由作为备份路由或浮动静态路由。 。缺省路由 当数据包到达路由器时,路由器根据数据包的目标地址到路由表中查找最佳路由。如果没有该路由信息,则使用缺省路由转发,当无缺省路由时则丢弃该数据包。所以,缺省路由就是用户设置的当不知道数据包该往何处发送时,一律发送到一个特定接口的路由。 8. 1. 1实验静态路由和缺省路由

k WXI UK), 2Q2207. 129. 1/27 .1, ULCI 100, 202.307. 12E.2/27 实验配置如图: cisco2610配置如下: Current configuration: ! version 11.3 hostname 2610 ! enable password cisco ! interface Ethernet。/。 ip address 202.207.126.253 255.255.255.224 ! interface Serial0/0 ip address 202.207.128.2 255.255.255.0 encapsulation frame-relay no ip mroute-cache frame-relay Imi-type ansi ! ip classless !

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

无线传感器网络路由协议研究【开题报告】

毕业设计开题报告 计算机科学与技术 无线传感器网络路由协议研究 一、选题的背景与意义 选题背景 随着微机电系统、无线通信技术、微型传感器技术和嵌入式技术的飞速发展,集数据采集、处理及通信功能于一体的无线传感器网络开始得到广泛的研究。网络层的路由协议是无线传感器网络研究的关键问题之一,它完成把数据分组从源节点引导到目的节点的功能。无线传感器节点是随机分布,电池供电,绝大部分的能量消耗是集中在无线通讯模块上,约占整个传感器节点能量消耗的80%。因此,目前提出的传感器节点通讯网络路由协议主要是围绕着减少能量消耗延长网络生命周期而进行设计的。 AOMDV多路径路由协议是无线传感器网络最重要的协议之一。通过它可以获得多条通信路径并且能够减少路由发现延迟,实现负载均衡,能够显著节省节点能量和防止瓶颈的产生。LEACH协议是传感器中具有负载均衡的很有用的一种协议。LEACH协议以循环的方式随机选择蔟首节点,将整个网络的能量负载平均分配到每个传感器节点中,从而达到降低网络能源消耗、提高网络整体生存时间的目的。这两种协议的研究对无线传感器路由协议的改进有很大帮助。 由于无线信道的广播特性,无线网络中任一节点发送的无线信号都可能被其通信范围的节点接收到。当局部空间范围内有两个以上的节点同时发送时,就有可能在接收节点处发生信号叠加,造成冲突,以至于接收节点无法正确接收到发送的信息。有效协调多个节点共享信道资源,避免冲突发生时无线网络面临的关键问题之一,直接影响着无线资源的使用效率、网络吞吐和时延等重要性能。所以,媒质接入控制(MAC)协议的研究也是无线传感器网络的重要课题之一。 课题意义 无线传感器网络是当前信息领域研究的热点,路由技术是无线传感器网络通信层的核心技术。目前,无线传感器网络路由协议研究的首要目标就是能量的高效利用,通过对网络层的路由协议的研究和分析,总结出优化的措施,同时基于NS2仿真平台对LEACH协议和AOMDV协议进行仿真和实验,在实验的基础上,对协议给予改进和优化,

计算机网络实验六 rip路由协议配置 )

太原理工大学现代科技学院计算机通信网络课程实验报告专业班级 学号 姓名 指导教师

实验名称同组人 专业班级学号姓名成绩 一、实验目的 《计算机通信网络》实验指导书 掌握RIP 动态路由协议的配置、诊断方法。 二、实验任务 1、配置RIP 动态路由协议,使得3台Cisco 路由器模拟远程网络互联。 2、对运行中的RIP 动态路由协议进行诊断。 三、实验设备 Cisco 路由器3台,带有网卡的工作站PC2台,控制台电缆一条,交叉线、V35线若干。 四、实验环境 五、实验步骤 1、运行CiscoPacketTracer 软件,在逻辑工作区放入3台路由器、两台工作站PC ,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2口同异步串口网络模块(WIC-2T ),重新打开电源。然后,用交叉线(CopperCross-Over )按图6-1(其中静态路由区域)所示分别连接路由器和各工作站PC ,用DTE 或DCE 串口线缆连接各路由器(router0router1),注意按图中所示接口连接(S0/0为DCE ,S0/1为DTE )。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop )项,选择运行IP 设置(IPConfiguration ),设置IP 地址、子网掩码和网关分别为 PC1gw: PC3gw: 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 点击路由器R2,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 同理对R3进行相应的配置: 4、测试工作站PC 间的连通性。 从PC1到PC3:PC>ping (不通) 5、设置RIP 动态路由 接前述实验,继续对路由器R1配置如下: 同理,在路由器R2、R3上做相应的配置: 6、在路由器R1上输入showiproute 命令观察路由信息,可以看到增加的RIP 路由信息。 … … … … … … … … … … … … … … 装 … … … … … … … … … … … …… … … 订 … …… … … …… … … … …… … … … … 线 … … …… … …… … …… … … … … …

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

无线传感网路由协议的分析比较

无线传感网路由协议的分析比较 无线传感网技术是对当今经济和社会进步发挥重要作用的技术,对于现代军事、信息技术、制造业等多个重要的领域产生着巨大的影响。而无线路由协议则是无线传感网研究中的热点问题。文章对于几个典型的平面路由协议和分层路由协议进行了介绍,分析了它们各自的利弊,并对它们进行了比较。 标签:无线传感网;路由协议;传感器节点 1 无线传感网概述 无线网络即使用无线传输介质的网络。目前有两种无线网络,基础设施网络和对等网络。基础设施网络的无线终端需要配置无线网卡,并通过接入点(AP)连接入网。对等网络即Ad hoc网络,不需要AP的支持,终端设备之间可以直接通信。无线Ad hoc网络又可分为两类,移动Ad hoc网络和无线传感器网络。前者的终端是快速移动的,后者的结点是静止的或者移动很慢。 无线传感网由大量的静止或移动的传感器组成,它们以自组织和多跳的方式构成无线网络,相互协作以探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。无线传感器网络技术在军事应用、智能家居、环境监测、建筑物质量监控、医疗护理等各个方面都有广泛应用[1]。 无线传感网的系统结构包括监测区域(Sensor Field)、传感器节点(Sensor Node)和汇聚节点(Sink Node)[2]。监测区域中包含了各种需要采集数据的观察对象;传感器节点用于采集观察对象的相关数据,并将处理后数据传给汇聚节点;汇聚节点用于收集由传感器节点传递来数据,并将数据传送到远程中心进行集中处理。 2 无线路由协议 无线路由协议是无线传感网研究中的热点问题。无线传感网的路由协议负责在源节点和目的节点之间可靠地传输数据,包括路由选择和数据转发两个功能。根据网络的拓扑结构是否有层次,可以将路由无线路由协议分为平面路由协议和分层路由协议[3]。 2.1 平面路由协议 平面路由协议适用于具有平面结构的网络,所有节点之间地位平等,协议相对简单。源节点和目的节点之间一般存在多条路径,可共同承担网络负荷,通常不存在瓶颈,网络具有较强的健壮性。然而,节点的组织、路由的建立、控制与维持所产生的开销需要占用较大的带宽,从而影响网络数据的传输速率。另外,当网络规模较大时需要损耗很大的能量,并且网络的可扩展性较差。因此,平面路由协议只适用于规模较小的网络。

相关主题