先进制造技术三束加工
② 相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的 选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相 干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好 的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息 技术才得以实现。
③方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到 月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方, 为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯, 如将其光投射到月球上,光斑直径将扩大到1 000公里以上。
激光加工的特点
由于激光具有的宝贵特性,因此就给激光加工带来如下一些其它方法所不具 备的可贵特点:
①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因 此可以实现多种加工的目的;
②它可以对多种金属、非金属加工,特别是可以加工搞硬度、高脆性及高熔 点的材料;
③激光加工过程中无“刀具”磨损,无“切削力”作用于工件;
激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集 中,从而可将激光束制成激光手术刀。另外,由几何光学可知,平行性越好 的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散 像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分 子的精细的“手术刀”。
④ 亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮 的光源,强激光甚至可产生上亿度的高温。激光的高能量是保证激光临床治 疗有效的最可贵的基本特性之一。利用激光的高能量还可使激光应用于激光 加工工业及国防事业等。
①激光打孔 利用激光束可对各种材料加工小孔和微孔,最小孔径达几微米,
深度可达直径的50倍。激光打孔时,用高功率密度脉冲激光源,影响加工 质量的因素有激光束的参数(能量、脉宽)、波形、焦距、偏焦量、脉冲次 数、被加工材料等。
②激光切割 激光切割常用二氧化碳气体激光器,连续或脉冲方式,所切割 的切缝窄、边缘质量好,几乎无切割残渣,切割速度高,也可切割金属,也 可切割非金属;既可切割无机物,也可切割有机物。可代替刀具切割木材, 代替剪刀切割布料、纸张,还可切割无法进行机械接触的工件。由于激光加 工对被切材料几乎不产生机械冲击力和压力,故适合切割玻璃、陶瓷和半导 体材料。
⑦生产效率高,加工质量稳定可靠,经济效益和社会效益好。
激光加工的应用
激光加工是激光系统最常用的应用。根据激光束与材料相互作用的机理,大 体可将激光加工分为激光热加工和光化学反应加工两类。激光热加工是指利 用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激 光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指 激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。 包括光化学沉积、立体光刻、激光刻蚀等。
工过程自动化。
二、激光束加工
激光:源自在经过激励后由高能级院子跃迁到低能级而发射的 光子所产生的物理现象。 激光产生的原理:原子经过激励而发生跃迁现象。 激 光 加 工 :激光加工就是利用光的能量经过透镜聚焦后在焦点 上达到很高的能量密度产生的光热效应来加工各种材料。
图1.激光加工示意图
激光束加工设备
激光机工的基本设备由激光器、导光聚焦系统和加工机(激光 机工系统)三部分组成。
1.激光器:激光器是激光加工的重要设备,他的任务是把电能 转换为光能,产生所需要的激光束。按工作物质的种类可分为 固体激光器、气体激光器、液体激光器和半导体激光器四大类。
2.导光聚焦系统:根据被加工工件的性能要求,光束经过放大、 整形、聚焦后作用于加工部位,这种从激光器输出窗口到被加 工工件之间的装置成为导光聚焦系统。
先进制造技术三束 加工
本次课程内容
高能束流 激光束加工 电子束加工 离子束加工
一、高能束流
高能束流(High Energy Density Beam)加工技术是利用激光 束、电子束、离子束和高压水射流等高能量密度的束流(其中 高压水射流是冷切割加工技术),对材料或构件进行特种加工 的技术。它的主要技术领域有激光束加工技术、电子束加工 技术、离子束及等离子体加工技术以及高能束流复合加工技 术等。它包括焊接、切割、制孔、喷涂、表面改性、刻蚀和 精细加工等,用于加工制造具有先进技术指标的构件或制备 新型材料。
常用的高能密度束流加工方法主要是激光加工、电子束加工、 离子束加工等。
高能束加工特点
1.加工速度快,热流输入少,对工件热影响极少,工件变形 小。
2.束流能够聚焦且有极高的能量密度,激光加工、电子束加工 可使任何坚硬、难熔的材料在瞬间熔融汽化,而离子束加工是 以极大能量撞击零件表面,使材料变形、分离破坏。
加工原理
激光加工是以激光为热源对工件进行热加工。
激光是单色光,强度高、相干性和方向性好,通过一系列的光 学系统,可将激光束聚焦成光斑直径小到几微米、能量密度高 达108~109W/cm2,并能在千分之几秒甚至更短的时间内使 任何可熔化、不可分解的材料熔化、蒸发、汽化而达到加工的 目的。
因此,激光加工是工件在光热作用下产生高温熔融和受冲击抛 离的综合过程。
3.激光加工系统:激光加工系统主要包括床身、能够在三维坐 标范围之内移动的工作台及机电控制系统等。
激光的特性
激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的 特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
① 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含 有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光 源。 由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床 选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量 中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,并 非激光照射部位没有货影响极小。因此,其热影响区小,工件热变小,后续 量小;
⑤它可通过透明介质对密闭容器内的工件进行各种加工;
⑥由于激光束易于导向、聚焦实现作各方向变换,极易与数控系统配合,对 复杂工件进行加工,因此它是一种极为灵活的加工方法;