当前位置:文档之家› 同济大学线性代数第六版课后答案(全)

同济大学线性代数第六版课后答案(全)

第一章 行列式 1 利用对角线法则计算下列三阶行列式

(1)381141102

解 381141102 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644

(2)bacacbcba

解 bacacbcba acbbaccbabbbaaaccc 3abca3b3c3

(3)222111cbacba 解 222111cbacba bc2ca2ab2ac2ba2cb2 (ab)(bc)(ca) (4)yxyxxyxyyxyx 解 yxyxxyxyyxyx x(xy)yyx(xy)(xy)yxy3(xy)3x3 3xy(xy)y33x2 yx3y3x3 2(x3y3) 2 按自然数从小到大为标准次序 求下列各排列的逆序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3    (2n1) 2 4    (2n) 解 逆序数为2)1(nn 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个)       (2n1)2 (2n1)4 (2n1)6    (2n1)(2n2) (n1个)

(6)1 3    (2n1) (2n) (2n2)    2 解 逆序数为n(n1)  3 2(1个) 5 2 5 4 (2个)       (2n1)2 (2n1)4 (2n1)6    (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个)       (2n)2 (2n)4 (2n)6    (2n)(2n2) (n1个) 3 写出四阶行列式中含有因子a11a23的项 解 含因子a11a23的项的一般形式为 (1)ta11a23a3ra4s 其中rs是2和4构成的排列 这种排列共有两个 即24和42

所以含因子a11a23的项分别是

(1)ta11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)ta11a23a34a42(1)2a11a23a34a42a11a23a34a42 4 计算下列各行列式 (1)71100251020214214 解 71100251020214214010014231020211021473234cccc34)1(143102211014 14310221101401417172001099323211cccc

(2)2605232112131412 解 2605232112131412260503212213041224cc041203212213041224rr 0000003212213041214rr

(3)efcfbfdecdbdaeacab 解 efcfbfdecdbdaeacabecbecbecbadf abcdefadfbce4111111111 (4)dcba100110011001 解 dcba100110011001dcbaabarr10011001101021 dcaab101101)1)(1(12

01011123cdc

adaabdcc

cdadab111)1)(1(23abcdabcdad1

5 证明: (1)1112222bbaababa(ab)3; 证明

1112222bbaababa00122222221213ababaabaabacccc

abababaab22)1(22213

21))((abaabab(ab)3 

(2)yxzxzyzyxbabzaybyaxbxazbyaxbxazbzaybxazbzaybyax)(33; 证明

bzaybyaxbxazbyaxbxazbzaybxazbzaybyax bzaybyaxxbyaxbxazzbxazbzayybbzaybyaxzbyaxbxazybxazbzayxa bzayyxbyaxxzbxazzybybyaxzxbxazyzbzayxa22

zyxyxzxzybyxzxzyzyxa33

yxzxzyzyxbyxzxzyzyxa33

yxzxzyzyxba)(33

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222ddddccccbbbbaaaa; 证明

2222222222222222

)3()2()1()3()2()1()3()2()1()3()2()1(ddddccccbbbbaaaa

(c4c3 c3c2 c2c1得)

5232125232125232125232122222ddddccccbbbbaaaa(c4c3 c3c2得) 022122212221222122222ddcc

bb

aa

(4)444422221111dcbadcbadcba (ab)(ac)(ad)(bc)(bd)(cd)(abcd); 证明

444422221111

dcbadcbadcba

)()()(0)()()(001111222222222addaccabbaddaccabbadacab

)()()(111))()((222addaccabbdcbadacab ))(())((00111))()((abdbddabcbccbdbcadacab )()(11))()()()((abddabccbdbcadacab =(ab)(ac)(ad)(bc)(bd)(cd)(abcd)

(5)1221 1 000 00 1000 01axaaaaxxxnnnxna1xn1    an1xan  证明 用数学归纳法证明 当n2时 2121221axaxaxaxD 命题成立 假设对于(n1)阶行列式命题成立 即 Dn1xn1a1 xn2    an2xan1 则Dn按第一列展开 有

1 11 00 100 01)1(11xxaxDDn

nnn

xD n1anxna1xn1    an1xan  因此 对于n阶行列式命题成立

6 设n阶行列式Ddet(aij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转 依次得

nnnnaaaaD11111  11112 nnnnaaaaD  11113 aaaaDnnnn

证明DDD

nn2)1(21)1(

 D3D 

证明 因为Ddet(aij) 所以

nnnnnnnnnnaaaaaaaaaaD2211111111111 )1(   )1()1(331122111121nnnn

n

nnn

aaaa

aaaa

DDnnnn2)1()1()2( 21)1()1( 同理可证

nnnnnnaaaaD )1(11112)1(

2DDnnTnn2)1(2)1()1()1(

DDDDDnnnnnnnn)1(2)1(2)1(22)1(3)1()1()1()1( 7 计算下列各行列式(Dk为k阶行列式) (1)aaDn1 1, 其中对角线上元素都是a 未写出的元素都是0 解

aaaaaDn0 0010 000 00 0000 0010 00

(按第n行展开)

)1()1(10 000 00 0000 0010 000)1(nnnaa

a

)1()1(2 )1(nnn

a

aa

相关主题